
Multigrid Equation Solvers for Large Scale Nonlinear

Finite Element Simulations

Mark Francis Adams

Report No. UCB/CSD-99-1033

January 1999

Computer Science Division (EECS)

University of California

Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Multigrid Equation Solvers for Large Scale Nonlinear Finite Element
Simulations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The finite element method has grown, in the past 40 years, to be a popular method for the simulation of
physical systems in science and engineering. The finite element method is used in a wide array of
industries. In fact just about any enterprise that makes a physical product can, and probably does, use
finite element technology. The success of the finite element method is due in large part to its ability to allow
the use of accurate formulation of partial differential equations (PDEs), on arbitrarily general physical
domains with complex boundary conditions. Additionally, the rapid growth in the computational power
available in today’s computers -- for an ever more affordable price -- has made finite element technology
more accessible to a wider variety of industries and academic disciplines. As computational resources allow
people to produce ever more accurate simulation of their systems -- allowing for the more efficient design
and safety testing of everything from automobiles to nuclear weapons to artificial knee joints -- all aspects
of the finite element simulation process are stressed. The largest bottleneck in the growth in the scale of
finite element applications is the linear equation solver used in implicit time integration schemes. This is
due to the fact that the direct solution methods -- popular in the finite element community as they are
efficient, easy to use, and relatively unaffected by the underlying PDE and discretization -- do not scale well
with increasing problem size. The scale of problems that are now becoming feasible demand that iterative
methods be used. The performance issues of iterative methods is very different from those of direct
methods, as their performance is highly sensitive to the underlying PDE and discretization; the
construction of robust iterative methods for finite element matrices is a hard problem which is currently a
very active area of research. We discuss the iterative methods commonly used today, and show that they
can all be characterized as methods that solve problems efficiently by projecting the solution to a series of
subspaces. The goal of iterative method design, and indeed of finite element method design, is to select a
series of subspaces that solves problems "optimally"; solvers try to minimize solution costs and finite
element formulations try to optimize accuracy of the solution. The subspaces used in multigrid methods are
highly effective in minimizing solution costs -- particularly on large problems. Multigrid is known to be the
most effective solution method for some discretized PDEs, however its effective use on unstructured finite
element meshes is an open problem, and constitutes the theme of this study.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

215

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Multigrid Equation Solvers for Large Scale Nonlinear

Finite Element Simulations

by

Mark Francis Adams

B.A. (University of California, Berkeley) 1983

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Civil Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor Robert L. Taylor, Co-chair

Professor James W. Demmel, Co-chair

Professor Gregory L. Fenves

Professor Katherine Yelick

1998

The dissertation of Mark Francis Adams is approved:

Co-chair Date

Co-chair Date

Date

Date

University of California, Berkeley

1998

Multigrid Equation Solvers for Large Scale Nonlinear

Finite Element Simulations

Copyright 1998

by

Mark Francis Adams

1

Abstract

Multigrid Equation Solvers for Large Scale Nonlinear Finite Element Simulations

by

Mark Francis Adams

Doctor of Philosophy in Engineering - Civil Engineering

University of California, Berkeley

Professor Robert L. Taylor, Co-chair

Professor James W. Demmel, Co-chair

The �nite element method has grown, in the past 40 years, to be a popular method

for the simulation of physical systems in science and engineering. The �nite element method

is used in a wide array of industries. In fact just about any enterprise that makes a physical

product can, and probably does, use �nite element technology. The success of the �nite

element method is due in large part to its ability to allow the use of accurate formulation of

partial di�erential equations (PDEs), on arbitrarily general physical domains with complex

boundary conditions. Additionally, the rapid growth in the computational power available

in todays computers - for an ever more a�ordable price - has made �nite element technology

more accessible to a wider variety of industries and academic disciplines.

As computational resources allow people to produce ever more accurate simulation

of their systems - allowing for the more e�cient design and safety testing of everything from

automobiles to nuclear weapons to arti�cial knee joints - all aspects of the �nite element

simulation process are stressed. The largest bottleneck in the growth in the scale of �nite

element applications is the linear equation solver used in implicit time integration schemes.

This is due to the fact that the direct solution methods - popular in the �nite element

community as they are e�cient, easy to use, and relatively una�ected by the underlying

PDE and discretization - do not scale well with increasing problem size.

The scale of problems that are now becoming feasible demand that iterative meth-

ods be used. The performance issues of iterative methods is very di�erent from those of

direct methods, as their performance is highly sensitive to the underlying PDE and dis-

2

cretization; the construction of robust iterative methods for �nite element matrices is a

hard problem which is currently a very active area of research. We discuss the iterative

methods commonly used today, and show that they can all be characterized as methods

that solve problems e�ciently by projecting the solution to a series of subspaces. The goal

of iterative method design, and indeed of �nite element method design, is to select a series

of subspaces that solves problems \optimally"; solvers try to minimize solution costs and

�nite element formulations try to optimize accuracy of the solution. The subspaces used in

multigrid methods are highly e�ective in minimizing solution costs - particularly on large

problems. Multigrid is known to be the most e�ective solution method for some discretized

PDEs, however its e�ective use on unstructured �nite element meshes is an open problem,

and constitutes the theme of this study.

The main contribution of this dissertation is the algorithmic development and

experimental analysis of robust and scalable techniques for the solution of the sparse, ill-

conditioned matrices that arise from �nite element simulation in 3D continuum mechanics.

We show that our multigrid formulations are e�ective in the linear solution of systems with

large jumps in material coe�cients, for problems with realistic mesh con�guration and ge-

ometries (including poorly proportioned elements), and for problems with poor \geometric"

conditioning as is commonplace in structural engineering. We show that the these meth-

ods can be used e�ectively within nonlinear simulations via Newton's method. We solve

problems with more than sixteen million degrees of freedom and parallel solver e�ciency

of about 60% on 512 processors of a Cray T3E. We also show that our methods can be

adapted and extended to the inde�nite matrices that arise in the simulation of problems

with constraints, namely contact problems, formulated with Lagrange multiplier.

Professor Robert L. Taylor
Dissertation Committee Co-chair

Professor James W. Demmel
Dissertation Committee Co-chair

iii

To my best friend Nighat

for constant support for many years before my graduate work and throughout the

many years of this work

iv

Contents

List of Figures viii

List of Tables xi

1 Dissertation summary 1

1.1 Introduction : 1

1.2 The �nite element method : 1

1.3 Motivation : 2

1.4 Goals : 4

1.5 Dissertation outline : 6

1.6 Contributions : 8

1.7 Notation : 9

2 Mathematical preliminaries 11

2.1 Introduction : 11

2.2 The �nite element method : 12

2.2.1 Finite element example: Linear isotropic heat equation : : : : : : : : 13

2.3 Iterative equation solver basics : 16

2.3.1 Matrix splitting methods : 16

2.3.2 Krylov subspace methods : 17

2.3.3 Preconditioned Krylov subspace methods : : : : : : : : : : : : : : : 21

2.3.4 Krylov subspace methods as projections : : : : : : : : : : : : : : : : 22

2.4 One level domain decomposition : 23

2.4.1 Alternating Schwartz method : 23

2.4.2 Multiplicative and additive Schwarz : : : : : : : : : : : : : : : : : : 25

3 Multilevel domain decomposition 29

3.1 Introduction : 29

3.2 A Simple two level method : 31

3.3 Multigrid : 32

3.3.1 Convergence of multigrid : 36

3.4 Convergence analysis of domain decomposition : : : : : : : : : : : : : : : : 39

3.4.1 Variational formulation : 39

3.4.2 Domain decomposition components : : : : : : : : : : : : : : : : : : : 42

v

3.4.3 A convergence theory : 44

4 High performance linear equation solvers for �nite element matrices 47

4.1 Introduction : 47

4.2 Algebraic multigrid : 48

4.2.1 A promising algebraic method : 48

4.3 Geometric approach on unstructured meshes : : : : : : : : : : : : : : : : : 49

4.3.1 Promising geometric approaches : 50

4.4 Domain decomposition : 51

4.4.1 A domain decomposition method : 52

5 Our method 53

5.1 Introduction : 53

5.2 A parallel maximal independent set algorithm : : : : : : : : : : : : : : : : : 55

5.2.1 An asynchronous distributed memory algorithm. : : : : : : : : : : : 56

5.2.2 Shared memory algorithm : 58

5.2.3 Distributed memory algorithm : 61

5.2.4 Complexity of the asynchronous maximal independent set algorithm 65

5.2.5 Numerical results : 67

5.3 Maximal independent set heuristics : 71

5.3.1 Automatic coarse grid creation with unstructured meshes : : : : : : 71

5.3.2 Topological classi�cation of vertices in �nite element meshes : : : : : 73

5.3.3 A simple face identi�cation algorithm : : : : : : : : : : : : : : : : : 74

5.3.4 Modi�ed maximal independent set algorithm : : : : : : : : : : : : : 75

5.3.5 Vertex ordering in MIS algorithm on modi�ed �nite element graphs 77

5.3.6 Coarse grid cover of �ne grid : 79

5.3.7 Numerical results : 82

5.4 Mesh generation : 84

5.5 Finite element shape functions : 85

5.6 Galerkin construction of coarse grid operators : : : : : : : : : : : : : : : : : 85

5.7 Smoothers : 87

6 Multigrid characteristics on linear problems in solid mechanics 89

6.1 Introduction : 89

6.2 Multigrid works : 90

6.3 Large jumps in material coe�cients - soft section cantilever beam : : : : : : 92

6.4 Large jumps in material coe�cients - curved material interface : : : : : : : 94

6.5 Incompressible materials : 96

6.6 Poorly proportioned elements : 99

6.7 Conclusion : 100

7 Parallel architecture and algorithmic issues 101

7.1 Introduction : 101

7.2 Parallel �nite element code structure : 101

7.2.1 Finite element code structure : 102

vi

7.2.2 Finite element parallelism : 103

7.2.3 Parallelism and graph partitioning : : : : : : : : : : : : : : : : : : : 104

7.2.4 Parallel computer architecture : 106

7.2.5 Multiple levels of partitioning : 107

7.2.6 Solver complexity issues : 107

7.3 A parallel �nite element architecture : 108

7.3.1 Athena : 108

7.3.2 Epimetheus : 110

7.3.3 Prometheus : 110

7.3.4 Athena/Epimetheus/Prometheus construction details : : : : : : : : 110

7.4 Processor subdomain agglomeration : 114

7.4.1 Simple subdomain agglomeration method : : : : : : : : : : : : : : : 115

7.4.2 Subdomain agglomeration as an integer programming problem : : : 116

7.4.3 Potential use of a computational model : : : : : : : : : : : : : : : : 117

7.4.4 Subdomain agglomeration method : : : : : : : : : : : : : : : : : : : 118

8 Parallel performance and modeling 121

8.1 Introduction : 121

8.2 Motivation, computational models, and notation : : : : : : : : : : : : : : : 123

8.2.1 Notation and computational models : : : : : : : : : : : : : : : : : : 123

8.3 PRAM computational model and analysis : : : : : : : : : : : : : : : : : : : 126

8.4 Costs and bene�ts : 129

8.4.1 E�ciency measures : 131

8.5 Computational model of multigrid : 134

8.5.1 Multigrid component labeling : 135

8.5.2 Coarse grid size and density : 137

8.5.3 Floating point costs : 139

8.5.4 Communication costs : 141

8.5.5 Total cost of components : 143

8.6 Conclusion and future work in multigrid complexity modeling : : : : : : : : 147

9 Linear scalability studies 149

9.1 Introduction : 149

9.2 Solver con�guration and problem de�nitions : : : : : : : : : : : : : : : : : : 149

9.3 Problem P1 : 150

9.4 Scalability studies on a Cray T3E - P115 : : : : : : : : : : : : : : : : : : : 151

9.5 Scalability studies on an IBM PowerPC cluster - P130 : : : : : : : : : : : : 154

9.6 Agglomeration and level performance : 157

9.6.1 Agglomeration : 157

9.6.2 Performance on di�erent multigrid levels : : : : : : : : : : : : : : : : 157

9.7 End to end performance : 158

9.7.1 Cray T3E : 159

9.7.2 IBM PowerPC cluster : 160

9.7.3 Conclusion : 162

vii

10 Large scale nonlinear results, and inde�nite systems 163

10.1 Introduction : 163

10.2 Non-linear problem - P2 : 164

10.3 Non-linear solver : 165

10.4 Cray T3E - large scale linear solves : 166

10.5 Cray T3E - non-linear solution : 170

10.6 Lagrange multiplier problems : 173

10.6.1 Numerical results : 175

10.7 Conclusion : 177

11 Conclusion 178

11.1 Future Work : 179

Bibliography 182

A Test problems 188

B Machines 198

viii

List of Figures

2.1 Conjugate Gradient Algorithm : 20

2.2 Preconditioned Conjugate Gradient Algorithm : : : : : : : : : : : : : : : : 22

2.3 Schwarz's original �gure : 24

2.4 Two Subdomains with Matching Grids : 26

2.5 Matrix Graph of the Two Subdomain Problem : : : : : : : : : : : : : : : : 26

2.6 Matrix (A) for the Two Subdomain Problem : : : : : : : : : : : : : : : : : 27

2.7 Multiplicative Schwarz with Two Subdomains : : : : : : : : : : : : : : : : : 27

2.8 Additive Schwarz with Two Subdomains : 28

3.1 Matrix for the Two Level Method : 31

3.2 Graph for the Restriction Matrix for the Two Level Method : : : : : : : : : 32

3.3 Multigrid V-cycle Algorithm : 34

3.4 Multigrid V-cycle : 34

3.5 Full Multigrid Algorithm : 35

3.6 Multigrid F-cycle : 35

3.7 Graph of spectrum of (R!) for ! = 1=2; 2=3; 1,N = 99 : : : : : : : : : : : : 37

5.1 Finite element quadrilateral mesh and its corresponding graph : : : : : : : 57

5.2 Basic MIS algorithm (BMA) for the serial construction of an MIS : : : : : : 57

5.3 Shared memory MIS algorithm (SMMA) for MIS, running on processor p : 59

5.4 Asynchronous distributed memory MIS algorithm (ADMMA) on processor p 61

5.5 ADMMA \Action" procedures running on processor p : : : : : : : : : : : : 62

5.6 Weaving monotonic path (WMP) in a 2D FE mesh : : : : : : : : : : : : : : 63

5.7 13,882 vertex 3D FE mesh : 68

5.8 Average iterations vs. number of processors and number of vertices : : : : : 70

5.9 Multigrid coarse vertex set selection on structured meshes : : : : : : : : : : 72

5.10 Basic MIS algorithm for the serial construction of an MIS : : : : : : : : : : 73

5.11 Face identi�cation algorithm : 75

5.12 Poor MIS for multigrid of a \shell" : 76

5.13 Original and fully modi�ed graph : 77

5.14 MIS and coarse mesh : 77

5.15 Modi�ed coarse grid : 81

5.16 Fine (input) grid and coarse grids for problem in 3D elasticity : : : : : : : : 81

ix

5.17 Test problems from linear elasticity: Sphere (39,732 dof), beam-column

(34,460 dof), tube (57,600 dof) : 82

5.18 Matrix triple product algorithm running on processor p : : : : : : : : : : : 87

6.1 Cantilever with uniform mesh and end load, 4� 4� 128 element mesh, N = 4 90

6.2 Residual convergence for multiple discretizations of a cantilever : : : : : : : 91

6.3 Residual convergence for a cantilever with soft a section : : : : : : : : : : : 93

6.4 Residual convergence for included sphere with soft cover : : : : : : : : : : : 95

6.5 Residual convergence for included sphere with incompressible cover material 97

6.6 Spectrum of 3,800 dof included sphere with incompressible cover material : 98

6.7 Cantilevered hollow cone, �rst principal stress and deformed shape : : : : : 99

6.8 Residual convergence for Cone problem : 100

7.1 Common computer architectures : 106

7.2 FEAP command language example : 112

7.3 Code Architecture : 113

7.4 Matrix vector product: Mop/sec on a Cray T3E : : : : : : : : : : : : : : : 115

7.5 Cartoon of cost function, and its transpose : : : : : : : : : : : : : : : : : : 119

7.6 Cartoon of the \�tted" function : 120

7.7 Search for best feasible integer number of processors : : : : : : : : : : : : : 120

8.1 Multigrid computational components labels and parameters : : : : : : : : : 125

8.2 Finite element cost structure : 131

8.3 E�ciency Plot Structure : 133

8.4 Full Multigrid Cycle : 136

8.5 Floating point counts for multigrid components : : : : : : : : : : : : : : : : 140

8.6 Costs for multigrid components : 143

8.7 Comparison of model with experimental data for send phase of matrix vector

product on �ne grid : 146

8.8 Cost Inventory of CG with Full Multigrid Preconditioner : : : : : : : : : : 148

9.1 13,882 Vertex 3D FE mesh and deformed shape : : : : : : : : : : : : : : : : 150

9.2 15,000 dof per processor, included sphere times, on a 512 PE Cray T3E : : 151

9.3 15,000 dof per processor, included sphere e�ciency, on a Cray T3E : : : : : 152

9.4 15,000 dof per processor, included sphere, e�ciency on a Cray T3E : : : : : 154

9.5 30,000 dof per processor, 2 active processors per node, included sphere times,

on a IBM PowerPC cluster : 155

9.6 30,000 dof per processor, 2 processors per node, included sphere e�ciency,

on a IBM PowerPC cluster : 156

9.7 30,000 dof per processor, 2 processors per node, included sphere, e�ciency

on a IBM PowerPC cluster : 156

9.8 15,000 dof per processor \end to end" times on a Cray T3E : : : : : : : : : 159

9.9 15,000 dof per processor \end to end" e�ciency on a Cray T3E : : : : : : : 160

9.10 60 k dof per node, 2 proc. per node \end to end" times, IBM PowerPC cluster161

x

9.11 60 k dof per node, 2 proc. per node \end to end" e�ciency, IBM PowerPC

cluster : 161

10.1 80,000 dof concentric spheres problem : 164

10.2 41,000 dof per processor, included concentric sphere times, on a Cray T3E : 166

10.3 41,000 dof per processor, included concentric sphere e�ciency, on a Cray T3E167

10.4 41 k dof per processor, concentric sphere, op e�ciency on a Cray T3E : : 168

10.5 41 k dof per processor, concentric sphere, Mop/sec e�ciency on a Cray T3E 169

10.6 Multigrid iterations per Newton iteration : : : : : : : : : : : : : : : : : : : 170

10.7 Histogram of the number iteration per Newton step in all (5) time steps : : 171

10.8 End to end times of non-linear solve with 32,000 dof per processor : : : : : 172

10.9 Uzawa algorithm : 175

10.1022,092 dof concentric spheres with contact, undeformed and deformed shape 175

10.1115,810 dof concentric spheres without contact, undeformed and deformed shape176

A.1 13,882 Vertex 3D FE mesh and deformed shape : : : : : : : : : : : : : : : : 189

A.2 80,000 dof concentric spheres problem : 191

A.3 Cantilever with uniform mesh and end load, 4� 4� 128 element mesh, N = 4192

A.4 Truncated hollow cone : 193

A.5 Cantilevered tube : 194

A.6 Beam-column : 195

A.7 Concentric spheres without contact : 196

A.8 Concentric spheres with contact : 197

xi

List of Tables

5.1 Average number of iterations : 69

5.2 Solve time in seconds (number of iterations) : : : : : : : : : : : : : : : : : : 83

6.1 Multiple discretizations of a cantilever : 91

6.2 Cantilever with soft section : 92

6.3 Iterations for included sphere with soft cover : : : : : : : : : : : : : : : : : 94

6.4 Iterations for included sphere with common preconditioners in CG smoother 96

8.1 Top-down vs. bottom up performance modeling : : : : : : : : : : : : : : : : 122

8.2 Future complexity con�guration : 128

8.3 MFlop rates for MFlop types in multigrid : : : : : : : : : : : : : : : : : : : 140

8.4 Matrix vector product phase times : 145

9.1 Flat and \graded" processor groups, IBM PowerPC cluster : : : : : : : : : 157

9.2 Time for each grid on Cray T3E, 9.6 million dof problem : : : : : : : : : : 158

10.1 Non-linear materials : 165

10.2 Multigrid preconditioned CG iteration counts for contact problem : : : : : 176

A.1 Materials for test problems : 188

A.2 Problem P1 statistics : 190

A.3 Problem P2 statistics : 191

A.4 Problem P3 statistics : 192

A.5 Problem P4 statistics : 193

A.6 Problem P5 statistics : 194

A.7 Problem P6 statistics : 195

A.8 Problem P7 statistics : 196

A.9 Problem P8 statistics : 197

xii

Acknowledgements

I would like to express my gratitude to Professors R.L. Taylor and James Demmel for

sharing their enthusiasm for, and expertise in, their respective �elds - as well as for helping

to make my experience as a graduate student a rewarding and enriching one.

I would like to express my gratitude to Professor Taylor for his support and con-

stant enthusiasm for my work that has made my years in the graduate program for the

Civil Engineering department a gratifying experience. I have learned much from Professor

Taylor's extensive knowledge, gained in his 40 years as a researcher and a practitioner, in

the �eld of Computational Mechanics.

I would like to thank Professor Demmel for his energetic support, that has been

invaluable to my experience and education here at Berkeley. The author has bene�ted

greatly from Professor Demmel's expertise, guidance and introduction to the �elds of Sci-

enti�c Computing, Computer Science, and Applied Mathematics.

I would like to express my gratitude to the following

� Professor Taylor for providing and maintaining FEAP, without which this work would

have been grossly inferior [36].

� The PETSc team [10]: Satish Balay, William Gropp, Lois Curfman McInnes, and

Barry Smith for providing a great product, without which this work would have been

grossly inferior. And I especially want to thank Barry Smith for his tireless support of

PETSc, for his concise theory manual \Domain Decomposition" [78], and for informing

me (in 1995 with Tony Chan) of the basic algorithm with which I work, and without

which I would not have a life.

� George Karypis for providing a fast full features state-of-the-art mesh partitioner:

METIS and ParMetis [52].

� Jonathan Shewchuk for providing fast robust geometric predicates [73].

� Argonne National Laboratory for the use of their IBM SP which was invaluable in the

early development work for this dissertation.

� Steve Ashby for his support of this work and for providing me with the opportunity to

work for a summer in the intellectually stimulating environment of CASC and LLNL.

xiii

� Juliana Hsu, for providing me with test problems from the ALE3D group at LLNL, and

the entire ALE3D group, and the linear solvers group in CASC, for many interesting

discussions during my summer at the lab.

� Lawrence Livermore National Laboratory for providing access to its computing sys-

tems and to the sta� of Livermore Computing for their support services.

� Lawrence Berkeley National Laboratory for the use of their Cray T3E, and their very

helpful support sta�. This research used resources of the National Energy Research

Scienti�c Computing Center, which is supported by the O�ce of Energy Research of

the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

� Eric Kasper for providing me with the original FEAP source for test problem P1 in

chapter 9.

This research was supported in part by the Department of Energy under DOE

Contract No. W-7405-ENG-48 and DOE Grant Nos. DE-FG03-94ER25219, DE-FG03-

94ER25206, and DE-FC03-98ER25351, the National Science Foundation under NSF Coop-

erative Agreement No. ACI-9619020, Infrastructure Grant No. CDA-9401156, and Grant

No. ASC-9313958, the Defense Advanced Research Projects Agency under DARPA Con-

tract No. F30602-95-C-0014 and Grant No. DE-FG03-94ER25206, gifts from the IBM

Shared University Research Program, the California State MICRO program, Sun Microsys-

tems, and Intel, and funds from the California State MICRO program. The information

presented here does not necessarily reect the position or the policy of the Government and

no o�cial endorsement should be inferred.

1

Chapter 1

Dissertation summary

1.1 Introduction

The �nite element method has proven to be a popular spatial discretization tech-

nique in the simulation of complex physical systems in many areas of science and engi-

neering. The �nite element method commonly provides for the spatial discretization of the

domain for a partial di�erential equation (PDE); time discretizations or time integrators are

also required. Time integrators fall into two main categories: implicit and explicit. Explicit

schemes are preferable for problems in which the interval in the time discretization is short

relative to the spatial discretization. Implicit methods are more compute intensive than

explicit methods, however they have superior stability properties and are thus preferable

when the time step required to capture the behavior of the system is large relative the

spatial discretization. Implicit methods are expensive because they require that a sparse

operator be linearized and its inverse (a dense operator) applied to a vector, rather than

only the sparse operator itself - this is much more di�cult to compute. The cost of applying

the inverse of a �nite element operator will dominate the total cost of the �nite element

method when an implicit time integrator is in use on large scale problems - the e�ective

solution of this problem is the subject of this dissertation.

1.2 The �nite element method

The �nite element method �nds the \optimal" solution of a partial di�erential

equation in a user provided function space - that is it calculates a solution in the span of a

2

provided set of functions whose error is orthogonal to this subspace in some inner product.

This is often calculated with an orthogonal projection and is the basis of classical methods

such as Galerkin and Rayleigh-Ritz methods. The key aspect of the �nite element method,

that has lead to its success, is the use of piecewise continuous (low order) polynomials �rst

introduced by Courant in the 1940s [25] and independently by the engineering community

in the 1950s [4]. Piecewise continuous polynomials are e�ective because they may be auto-

matically constructed by \meshing" a complex domain into simple elements or polyhedra,

and have compact support. Finite element basis functions can then be constructed, from

this mesh, on the elements.

The �nite element method is in part successful because it allows for a very hard

problem to be e�ectively decomposed into separate and well de�ned disciplines. Broadly

speaking these disciplines are

� Mesh generation

� Element formulation

� Non-linear and transient solution algorithms

� Linear equation solvers

� Visualization and post processing

This dissertation focuses on the e�ective construction of linear equation solvers for �nite

element method matrices in the high performance computational environments of today.

1.3 Motivation

The dominant costs of conducting a �nite element analysis, once the software has

been developed, is the construction of the model or mesh and the solution of a sparse set

of algebraic equations. The solution of this system of equations is generally the dominant

cost in an analysis as a single problem often requires the solution of hundreds or thousands

of equation sets if dynamic (or transient) analysis is called for. Nonlinear formulations

are generally solved with a series of linearized solutions, for instance by a Newton solution

scheme, at each time step. Additionally, �nite element analyses are usually used in design

processes or parametric analyses, thus requiring that many �nite element simulations be

run with a single mesh or model.

3

When implicit time discretization methods are in use, the cost of the sparse linear

system solve will dominate the cost of the �nite element simulation. Furthermore the linear

equation solver is one of the hardest parts of a �nite element solution to implement e�ciently

as the problem size, and number of parallel processors increases - therefore scalable linear

equation solver technology is of considerable importance to the continued growth in the use

of the �nite element method.

Direct solution methods based on Gaussian elimination are very popular as they

are robust and e�ective for moderate sized problems. Accurate �nite element simulations

often require that a �ne discretization be used, thus necessitating the solution of large

systems of equations. Also, in some cases, it may simply be more economical to use large,

fast, and ever cheaper computers to solve a large problem where in the past highly skilled

engineers have had to painstakingly assemble smaller analyses and combine their results

with intuition to assess the safety of a structure.

The di�culty with direct methods is that for typical �nite element problems op-

timal direct solvers have a time complexity of about n2 in 3D, where n is the number of

degrees of freedom in the system. Direct methods are more applicable to 2D models as the

number of degrees of freedom only increases quadratically with the scale of discretization,

as opposed to cubicly for 3D models. Additionally the time complexity for 2D problems is

about n3=2 as 2D problems tend to have much less \�ll" introduced during the factorization.

The rather small constants in the complexity of direct methods have allowed them

to be superior to iterative methods for the size models that were a�ordable in the past. But

the poor asymptotics of direct methods is now requiring that iterative methods be used as

iterative methods have the potential of O(n) time and space complexity.

Domain decomposition methods represent a framework for describing and analyz-

ing optimal iterative methods for solving the sparse matrices from unstructured discretiza-

tions of PDEs [78]. Multilevel domain decomposition methods are theoretically optimal

preconditioners. Of the family of multilevel domain decomposition methods, multigrid is

the most powerful on structured meshes. Multigrid is also ideally suited for �nite element

problems on unstructured grids, as it uses many of the same mathematical techniques (e.g.,

orthogonal projections) as well as many of the same tools in its implementation (e.g., mesh

generators). In fact, as we show, the core of multigrid is the recursive application of a vari-

ationally induced approximation of the \current" problem (grid) - this is also a description

of the �nite element method. Thus multigrid is, in a sense, the application of the �nite

4

element method to itself.

Many of the domains of interest to �nite element method practitioners are inher-

ently ill-conditioned problems with large ranges in scale of discretization, complex struc-

tures often requiring the use of less than ideally proportioned elements, sharp jumps in

material properties or changes in physics. These di�culties are exacerbated by the use of

state-of-the-art �nite element formulations - e.g., mixed methods for nearly incompressible

problems, plasticity formulation to simulate yielding of structural materials, large (�nite)

deformation elements, and the use of Lagrange multipliers in applying constraints. Many of

these formulations result in a loss of positive de�niteness in the equations and/or results in

equations that are very poorly conditioned. These �nite element formulations often severely

degrade the performance of iterative methods, thus the serial performance as well as scala-

bility of the solver is of utmost importance. This dissertation presents an e�ective methods

for solving the sparse ill-conditioned systems of equations that arise from large scale (i.e.,

106 � 108 vertices), state of the art �nite element simulations.

1.4 Goals

The exponential growth in the processing power of computers in the last twenty

years is enabling scientists and engineers to conduct ever more accurate simulations of

their systems. Along with the \pull" of the opportunity to conduct large scale simulations,

applications are \pushing" for fast, accurate simulations to design e�cient products and to

bring them to market quickly because of increasing global competition in manufacturing.

Also, testing products in the laboratory is at best a limited method of product testing and in

the case of the U.S. government is no longer a politically viable means of insuring the safety

of the nation's stockpile of nuclear weapons [6]. Thus, the time and expense of laboratory

testing is proving to be increasingly less attractive than computational simulations. As the

equation solver is the dominant cost in some large �nite element simulations, scalable and

robust equations solvers are of critical importance.

The primary requirements for the \next generation" of �nite element method equa-

tion solvers are:

1. Complete scalability. Any method must be completely scalable and completely

parallel. This means that the number of iterations required to reduce the error by

a constant fraction must be independent of the mesh size; or that the number of

5

iterations grows polylogarithmically (i.e., polynomial in log (n)) while the cost of each

iteration is polylogarithmic in time. The algorithm must also be feasible to implement

e�ciently, i.e. it must be easily parallelized. All solvers in this class are multilevel

solvers.

2. Robustness. In this context, robustness means that the method is e�ective on the

problems that will be common in industrial practice - i.e., unstructured meshes with

a wide range of scales of discretization, with multiple material properties, with widely

varying material coe�cients, and accurate material constitutions for all classes of

industrial applications. We are concerned with solvers for 3D solid mechanics problems

only, although the method that we discuss is applicable to problems in uid mechanics

and other areas of physics as well.

3. Easy of use. We would like to have a \black box" solver so as to simplify its use with

existing �nite element codes. This criterion is secondary, in that requiring more data

from the user is certainly more palatable than not being able to solve the problem.

Thus, we desire to have a minimal interface with the �nite element implementation,

and require only what is easily available in common �nite element codes.

Multigrid is the best known method to date that satis�es the �rst criterion. Multi-

grid is an optimal solver of Poisson's equation [27] (discretized with �nite element or �nite

di�erence methods) at least sequentially; the 3D FFT is competitive in parallel although

to our knowledge it is not applicable to problems as general as those that we consider.

The parallel time complexity of full multigrid is O(log(n)2); although realizing the theoret-

ical complexity on real machines is a challenge, multigrid can scale very well on the large

computers of today (chapters 9,10) and in the foreseeable future (x8.3).
The robustness of multigrid is necessary for our purposes as large �nite element

simulations can require a wide variety of �nite element formulations, in a variety of appli-

cations - many of which produce operators that are very demanding of iterative methods.

The multigrid algorithm that we work with [44, 23] o�ers the well-known advantages of

multigrid while maintaining a minimal - though not minimum - solver interface. The goal

of having a \black box" solver is theoretically achievable with algebraic multigrid methods

- although the only e�ective algebraic methods that we are aware of require geometric in-

formation [83, 19], as does ours. Our method builds on previous work [44, 23] and is an

6

automated method for constructing the coarse grids for standard multigrid algorithms and

forms the coarse grid operators algebraically. This combined geometric/algebraic approach

yields a method that has a similar interface with the �nite element implementation as ef-

fective algebraic methods; but our approach allows for a more extensive use of geometric

information that is quite e�ective on many classes of problems.

1.5 Dissertation outline

We have organized this dissertation so that it can be read in a multilevel fashion;

that is, one can read this chapter, the conclusion, and the preamble to each chapter to get

a uniform introduction to our work. One can read the introduction in each chapter, in

addition, to get a more detailed view of our work. The dissertation is organized as follows:

� Chapter 1 continues with a list of notations and concepts that we use in our work.

� Chapter 2 introduces pertinent background in iterative equation solvers for �nite

element matrices.

{ Finite element formulations are, in general, not necessary to understand the

characteristics of the equation solver, although multigrid is in fact very much

related to the �nite element method - multigrid can be seen as \the recursive

application of the �nite element method". Thus a rudimentary introduction to

the �nite element method proves to be invaluable in understanding the behavior

and construction of multigrid methods.

{ Basic iterative methods are introduced as we use some of them as \accelera-

tors", and they lead to domain decomposition methods, one variety of which is

multigrid.

{ One level domain decomposition methods are introduced as we use them within

our solver, and they serve to introduce many of the basic concepts of projections

which we use extensively.

� Chapter 3 discusses multi-level domain decomposition methods in general and multi-

grid in particular.

7

{ We introduce the basic issues of multi-level domain decomposition methods in

the vein of describing what has come before multigrid, and the alternatives to

multigrid.

{ We do not discuss the mathematical details of multigrid in great depth, however

we introduce the current state-of-the-art in analyzing multigrid on unstructured

grids. This description is not comprehensive but is intended to introduce some

basic concepts and proves useful in understanding the performance behavior of

multilevel methods.

� Chapter 4 describes the current competitive methods in the �eld of high performance

linear equation solvers for �nite element matrices.

� Chapter 5 introduces our multigrid method - we build on earlier work in 2D formula-

tions, extending them to 3D and in parallel. This includes our development of a new

maximal independent set algorithm for �nite element meshes that, under the PRAM

computational model (see 1.7) [41], has O(1) time complexity, and is practical - this

is an improvement over the previous best algorithm [50]. This chapter also includes

a set of heuristics and methods for applying this multigrid algorithm e�ectively to

complex �nite element meshes and represents the most original direct contribution of

the dissertation to linear equation solver algorithms.

� Chapter 6 presents a series of serial numerical studies aimed and elucidating some

important characteristics of the behavior of iterative solvers in general, and multigrid

in particular, on problems in solid mechanics. This chapter identi�es and analyses

the behavior of iterative solvers on problems with particular features, such as incom-

pressibility, poorly proportioned elements, complex geometries, and large jumps in

material coe�cients.

� Chapter 7 discusses parallel computational aspects of the �nite element method and

unstructured multigrid solvers. We discuss the structure of our code and some of the

algorithmic issues in optimizing performance of multilevel solvers on today's parallel

computers.

� Chapter 8 develops a theoretical framework for modeling multigrid complexity, devel-

ops a simple complexity model for the computers in the near future, uses it to analyze

8

multigrid solvers, and describes a more detailed computational model of unstructured

multigrid solvers on distributed memory computers.

� Chapter 9 shows numerical results, for problems in 3D linear elasticity, of scalability

experiments on an IBM PowerPC and Cray T3E, with up to 7,534,488 degrees of

freedom on 512 processors.

� Chapter 10 extends our linear solver to material nonlinear and large deformation �nite

element analysis, and shows numerical results for problems of up to 16,553,759 degrees

of freedom on 542 processors of a Cray T3E with about 60% parallel e�ciency. We

also develop methods for extending our solver to constrained problems with Lagrange

multipliers that arise in �nite element simulation with contact.

� Chapter 11 concludes with possible directions for future work.

� Appendix A lists our test problems and problem speci�cations.

� Appendix B lists the machines that we use for our numerical experiments.

1.6 Contributions

This dissertation develops a highly optimal linear equations solver for �nite element

matrices on unstructured grids. We extend an e�ective serial 2D multigrid algorithm to

3D with heuristics to maintain the geometry of a problem on automatically generated

coarse grids to dramatically improve performance and robustness of out iterative solver.

We develop a new parallel maximal independent set algorithm that has superior PRAM

complexity for �nite element graphs and is very practical as well. We develop algorithms to

mitigate the parallel ine�ciency the coarse grids of multigrid solvers on typical computers of

today. We have developed a fully parallel �nite element implementation built on an existing

serial research �nite element code, so as to fully test our code and algorithms. We show

performance results for problems of up to 16,553,759 equations and up to 512 processors on

a Cray T3E and an IBM PowerPC cluster in linear elasticity, large deformation elasticity,

and plasticity. We also apply our solver, in serial, to contact problems formulated with

Lagrange multipliers.

9

1.7 Notation

Finite element meshes provide a geometric description of individual elements; dif-

ferent element types require di�erent mesh types. A brief taxonomy, by dimension of degrees

of freedom, of 3D element types is as follows:

� 3D: continuum elements meshes are made of polytopes and are fully 3D elements.

� 2D: manifolds elements can be divided into two main classes of element types: plates

and shells (with bending energy), and membranes (without bending energy).

� 1D: elements can be divided into two main classes of element types: beams or rods

(with bending energy), and trusses (without bending energy).

Finite element analysis can use any and all of these element types in a single analysis.

This dissertation however only discusses continuum elements although multigrid methods

are applicable to all �nite element method formulations (with compactly supported basis

functions) [83, 39]. Additionally 3D elements are usually either hexahedra or tetrahedra.

Our examples use eight node hexahedral trilinear \brick" elements, but our methods can

adapt to other element types.

We work closely with �nite element meshes, in 3D continuum mechanics, so a few

de�nitions prove useful.

� Regular meshes. The grid points are on a regular lattice.

� Structured meshes. The grid points are on a logically regular grid, though coordi-

nates may be transformed.

� Unstructured meshes. The grid points are placed arbitrarily.

� Block structured meshes. Unstructured meshes of structured blocks.

The meshes of all �nite element applications must satisfy certain conditions, namely that any

vertex that is in the closure of an element domain must be one of the element's vertices, and

no two elements may intersect each other. The meshes of primary interest are unstructured,

as the primary strength of the �nite element method is its ability to accommodate complex

domains and boundary conditions.

10

dof: A degree of freedom, in a �nite element model, is represented by one entry in

a vector and produces one equation in a �nite element matrix. The total number of degrees

of freedom is denoted as n.

Vectors and functions: We use bold face u for functions, and plain text u for

vectors. A vector u is a list of weights by which to scale a set of basis functions �i that add

together to form an arbitrary function (in the span(�i) i = 1; : : : ; m) thus u =
Pm

i=1 ui�i.

residual: The residual of system of equations Ax = b, with a given solution

vector x is de�ned as r = b�Ax. Note, we use the (two) norm of the residual (i.e.,
p
rT r)

throughout this dissertation, and will generally simple call it the residual.

11

Chapter 2

Mathematical preliminaries

In this chapter we present background material useful in understanding our work.

2.1 Introduction

We begin with a brief introduction to the �nite element method, highlighting the

components similar to those in multigrid. Understanding the mathematical structure of

the �nite element method is useful in describing the nature of the matrices that we solve,

but more importantly it proves useful in understanding multigrid equation solvers. This is

because the mathematical structure of the �nite element method and multigrid are quite

similar, even though �nite elements and multigrid are solutions to two entirely di�erent

problems (i.e., multigrid is a method of implementing the application of the inverse of

a �nite element operator). In fact, as we show, the core of multigrid is the recursive

application of a variationally induced approximation of the \current" problem (grid) - this

is also a description of the �nite element method.

Linear equation solver fundamentals are introduced as the signi�cance of our work

can only be appreciated in the context of the alternatives. Additionally multigrid uses many

standard linear equation solvers in its construction. Modern domain decomposition theory

is introduced (multigrid can be analyzed as a particular domain decomposition method),

because modern domain decomposition analysis provides the strongest analytical methods

for multigrid on unstructured meshes. More importantly, modern domain decomposition

theory can provide invaluable insight into the nature of multigrid solvers and we thus provide

a brief overview of this theory with the intent of touching on its more salient features.

12

2.2 The �nite element method

The problem of simulating physical systems can, in general, be reduced to that of

�nding the solution u, for a linearized PDE operator L, and applied \forcing" function Q

that has the general form

L (u; t) +Q = 0 in
 (2.1)

u = �u on @
d

B (u) = �u on @
n

Were @
d is the boundary of the domain for which the displacements, or primal variable,

is speci�ed (i.e., Dirichlet boundary conditions); @
n denotes the portion of the boundary

with natural (i.e., Neumann boundary conditions) for which the dual variable (e.g., force)

is speci�ed.

Complex physical phenomenon are modeled, with complex PDEs, which may in-

clude domains of entirely di�erent physical behavior (as with uid-structure interaction

problems), or may have multiple coupled physical �elds (as with thermal-mechanical sys-

tems). Thus the actual simulation may be a composition of multiple domains and these

PDEs may be very complex. Additionally, accurate simulations are rarely linear, though

often they are linearized for use in a nonlinear solution method (e.g., by Newton's method).

Thus linear systems may be but one component of a fully nonlinear solution, but the core

solution procedure is the solution of a problem that can be represented symbolically by

equation (2.1).

The �nite element method is a means of formulating, or (spatially) discretizing,

partial di�erential equations, so they may be solved numerically [86, 24]. The �nite element

method provides a sound method of �nding the \optimal" solution, within a given subspace

of the space in which the true solution belongs. The �nite element method commonly utilizes

a Galerkin condition as its optimality criteria; a Galerkin condition can be stated as �nd

~u 2 S = span (�i); i = 1; 2; :::; n such that L~u + Q ? S, or equivalently h(L~u +Q) ;vi =
0 8v 2 S where ha;bi =

R

 a � b.

The success of the �nite element method is due in part to its ability to apply the

Galerkin condition to arbitrarily complex domains and boundary conditions. The strength

of �nite elements comes from mappings between arbitrary polyhedra and regular polyhedra

(e.g., the unit square where the mathematics are tractable), as well as the availability of

13

computational methods for automatically constructing good polyhedra on complex physical

domains [74]. With mesh generation techniques, these physically intuitive meshes can be

used to construct piecewise continuous polynomials for the set of basis functions S.
Thus, the �nite element method's success derives from its ability to construct

accurate subspaces (via unstructured meshes), and from the ability to compute projection

onto �nite element spaces relatively inexpensively, as the linearized �nite element operator

is sparse in commonly used �nite element discretizations. These projections are computed

with a linear equation solver - the e�ective construction of these solvers, for large �nite

element problems, is the subject of this dissertation.

The process of applying the �nite element method to the simulation of a physical

system can thus be summarized as

1. Develop a theory to model the physics (i.e., the strong form of the PDE).

2. Formulate a weak form of the PDE that can be used in the �nite element method.

3. Discretized the domain of interest with a �nite element mesh.

4. Pick a set of basis functions for each element - in which to �nd the approximate

solution.

5. Formulate a time integrator for transient PDEs.

6. Develop a nonlinear solution strategy for the discrete time form.

7. For each time step and for each iteration step in the nonlinear solution method, solve

a system of linear equations for the parameters of the �nite element basis functions.

8. For each time step, substitute the discrete answer into the basis functions to �nd the

answer where required and often derivatives of the answer as well, and transform this

data into a readable form.

2.2.1 Finite element example: Linear isotropic heat equation

For example, the strong form of the heat equation can be written as:

DX
i=1

@

@xi

k
@T

@xi

!
+Q = �c

@T

@t
in

14

with k the thermal conductivity, � the mass density and c the speci�c heat of the material;

or simply

r � (krT) +Q = �c
@T

@t
in
 (2.2)

T = gD on @
D

@T

@n
= gN on @
N

@
D [@
N =
 and @
D \ @
N = ;

T = T0 at t = 0

. For simplicity we only discuss the spatial discretization and look for a steady state solution,

thus @T
@t

= 0 in equation (2.2). Also assume homogeneous Dirichlet boundary conditions

(i.e., T = 0 on @
), and that the boundary is smooth enough so that the solution to 2.2 is

in L2 (
) (i.e.,
R

 T

2 < 1), then the homogeneous Dirichlet problem can be stated as the

Poissons problem

L (T) + Q = r � (krT) + Q = 0 in
 (2.3)

T = 0 on @

. If we multiply 2.3 by an arbitrary function v 2 L2 which satis�es the boundary conditions,

and integrate over the domain, then 2.3 can be equivalently stated as

Z

v [r � (krT) +Q] @
 = 0 8v 2 H1

0 (
) (2.4)

. Where H1
0 (
) is the set of functions that are zero on @
 and whose �rst derivatives are

in L2 (
). As u and v are in Sobolev spaces H1
0 (
), we can de�ne an inner product

(u; v) =

Z

u � v

and also a bilinear form

a (v; u) =

Z

rv � (kru)

so equation (2.4) can be transformed, with integration by parts, to the weak form of the

di�erential equation:

a (v; u)� (v;Q) = 0 8v 2 H1
0 (
) (2.5)

.

15

To formulate a numerical solution for a problem with the �nite element method

we �rst need a test space for v

T = span ('1; '2; :::'m)

and a solution space S for u

S = span (�1; �2; :::�m)

We can express a vector ~u 2 S as
Pn

j=1 �j�j , and ~v 2 T as
Pm

i=1 !i'i. In practice

T and S are often the same space, resulting in a Bubnov-Galerkin method, otherwise the

method is known as a Petrov-Galerkin method.

A �nite element approximation to T , in equations (2.5) and (2.4), can be con-

structed by replacing ~u and ~v in equation (2.5). If T = S, then we have n equation (one

for each test function) in n unknowns of the form:

!i

nX
j=1

a (�i; �j) � �j = !i (�i; Q) (2.6)

.

Remember v is arbitrary, as long as it satis�es the boundary conditions and so !i

is arbitrary and thus equation (2.6) may be written as

nX
j=1

a (�i; �j) � �j = (�i; Q) (2.7)

.

This is a set of n linear equations in n unknowns Ax = b, where

Aij = a (�i; �j) =

Z

r�i � kr�j ; bi =

Z

�i �Q

and x = [�1; �2; :::; �n]
T is the discrete vector that we solve for. These inner products are

implemented with numerical integration in which the operator L, in Cartesian coordinates,

is evaluated at carefully selected Gauss integration points - the weighed sum of which taken

over each element provides an accurate answer for the polynomial shape functions used in

�nite elements analysis.

Most problems of interest are non-linear, thus A is a function of x. The weak

form must then be linearized and a non-linear solution strategy formulated e.g., Newton's

method [86].

16

What remains to be done is to solve this sparse set of algebraic equations, for

the vector x, the answer ~u =
Pn

i=1 �i�i, can then be constructed and the solution or its

derivative can be generated at any point in the domain. Our next step is to introduce the

foundations of the method that we employ to solve these equations.

2.3 Iterative equation solver basics

The section introduces iterative equation solvers so as to motivate our research into

multigrid. Iterative equation solvers rely on the application of a sparse operator. Direct

solvers, based on Gaussian elimination, �rst factor an n by n matrix A into an upper and

a lower triangular matrix (e.g., �nd L and U such that A = LU).

The factorization has a complexity of about O
�
n3=2

�
for typical 3D sparse �nite

element matrices, (although the exact cost is dependent on the precise structure of the

matrix and the order of the equations). Finite element matrix factorizations have a space

complexity (i.e., memory requirement) of about O
�
n4=3

�
. Iterative methods have a space

complexity of O (n) but the time complexity is method dependent; the minimization of the

time complexity of iterative equation solvers is the primary goal in the design of an iterative

method.

This section gives a brief description of the classical iterative methods, beginning

with the simplest (and least e�ective) and culminating with what we consider the most ef-

fective (multigrid). This introduction is useful not only for providing a context for multigrid

but also proves useful in that multigrid actually uses many of the classical iterative methods

as components. In fact, multigrid is really nothing more than an intelligent marshaling of

iterative and direct methods in order to allow these methods, operating at di�ering scales

of resolution, to \do what they do best" - this becomes clear in subsequent chapters.

2.3.1 Matrix splitting methods

Some of the oldest iterative methods can be described by considering a \matrix

splitting", that is given a matrix A de�ne a splitting, A = M � K. Substituting this

expression into the system to be solved Ax = b, we get the equivalent expression x =

M�1 (b+Kx). This is not very useful in and of itself, however it does suggest an iterative

17

method: set k = 0, and while (jb� Axkj > tol) do, k = k + 1

xk =M�1 (Kxk�1 + b) (2.8)

. The idea is now to pick M and K such that the cost of applying the inverse of M is

inexpensive relative to the reduction in the error in each iteration.

Jacobi's method is a simple iterative method that visits each equation i and sets

x
(k)
i = 1

Aii

�
bi �

Pn
j 6=i Aij � x(k�1)j

�
, where (�)(k)i is the ith component of (�) 2 <n at iteration

k. Jacobi's method is a matrix splitting method in which M in equation (2.8) (MJ) is

the diagonal of A. Other commonly used matrix splitting methods are Gauss-Seidel and

successive overrelaxation SOR. Gauss-Seidel is a simple and natural improvement (usually)

of Jacobi in which the most recent data for x is used instead of only using the values of x form

the previous iteration. For Gauss-Seidel MGS is the diagonal and the lower triangular part

of A. SOR follows the intuition that if a correction to an approximate solution to a problem

is an improvement, then we can magnify this correction to get more improvement to the

solution. Thus with a user provided parameter ! (typically ! > 1),MSOR is !�1
�
D � ! ~L

�
where ~L is the strictly lower triangular part of A, and KSOR is

�
!�1 � 1

�
D + ~U .

2.3.2 Krylov subspace methods

Krylov subspace methods are an elegant means of designing iterative solvers that

have proven to be quit valuable in practice. A Krylov subspace is de�ned for a given

matrix A and vector b by K (A; b)k = span
�
b; Ab; A2b; :::; Ak�1b

�
. One advantage of Krylov

subspace methods is that the representation of the operator can be entirely abstracted from

the iterative method; that is the iterative method need only be able to apply the operator

and need not directly access the data that is used to represent the operator. This is a positive

attribute for an iterative method to possess, but is often not of paramount importance as

Krylov subspace methods invariably require preconditioning, which is often some type of an

incomplete factorization which in turn requires that parts of the actual matrix be accessed.

Regardless, Krylov subspace methods have proven to be very useful in the construction of

iterative solvers; we introduce them here as we routinely use them in our solvers.

The �rst Krylov subspace methods were developed in the 1950s, though most of

the research activity in these methods has taken place since the 1970s [48, 43]. Over the

past 20 years Krylov subspace methods have been designed for may types of matrices; this

is necessary as these methods can take advantage of a priori knowledge of the operator

18

(i.e., symmetry, positive de�niteness, semi-de�niteness, etc.), to provide better methods for

operators for which something is know about their spectra. A common property of �nite

element matrices, that Krylov subspace methods can take great advantage of, is symmetric

positive de�niteness (SPD). Conjugate gradients (CG), the �rst Krylov subspace method to

be developed, is an e�ective method that requires that the operator be SPD. We describe

and derive CG following the presentation in [43].

Consider the functional

� (v) =
1

2
vTAv � vT b (2.9)

Notice that minimizing � (v) yields v = A�1b = x, that is the minimization of equation

(2.9) is equivalent to solving Ax = b for x, if A is SPD. This fact can be deduced by taking

the Frechet derivative of equation (2.9)

@

@�

�
� (x+ ��)� � (x)

������
�=0

=
1

2

�
�TAx+ xTA�

�
� �Tb (2.10)

where � is an arbitrary perturbation vector and � is a scalar. By setting 2.10 to zero we �nd

that, if A is symmetric, x = A�1b is required to solve the resulting equation

�T (Ax � b) = 0 (2.11)

as � is arbitrary. Taking the second Frechet derivative of (2.11), simply give us A, thus if

A is positive we are minimizing the functional.

This construction gives us a \heuristic" to iteratively solve for x in Ax = b (ac-

tually this is not a heuristic but for the time being we will consider it as such). With this

construction we can pick an \optimal" scalar � to improve current solution xk with a vector

p by �nding the � that minimizes � (xk + �p). In so doing we �nd that we should pick � as

� =
pTrk

pTAp
(2.12)

where rk � b� Axk, if A is symmetric. This is all well and good but how can we pick p?

A simple choice is let p = rk, this is the method of steepest descent and it is not e�ective,

and does not optimize the solution very well.

Since we are only applying the operator, and are only given the vector b, we also

know that xk+1 2 K (A; b)k . For general search directions we would like to be able to pick

p so the new current solution is optimal in some well de�ned sense. That is we would

19

like our solution in xk+1 2 K (A; b)k to minimize the residual in some norm; we can not

minimize the error ek as we do not know the solution, but we can calculate the residual

rk = Aek = b� Avk.

An obvious choice is to use the two norm on the residual
q
rTk+1rk+1, which,

when A is symmetric, is equivalent to requiring that rk+1 ? K (A; b)k , that is the Galerkin
condition. With this choice we get general minimum residuals (GMRES) [72]. Conjugate

gradients chooses p so that the kth iterate xk minimizes the residual in the A�1 norm -

kxkA�1 =
p
xTA�1x.

We need to deduce the conjugate gradient choice of p in each iteration. To do

this express xk+1 as a linear combination of vectors p1; p2; :::; pk+1 which span K (A; b)k . In
matrix notation

xk+1 = Pk+1�y (2.13)

where �y is a vector of scalar weights of all of the search vectors in the columns of Pk+1.

Split equation (2.13) into two parts

xk+1 = Pky + �pk+1

use equation (2.9) to �nd xk+1, that is

miny;�� (Pky + �pk+1)

after some manipulation we get

miny;�

�
� (Pky) + �yTPT

k Apk+1 +
�2

2
pTk+1Apk+1 � �pTk+1b

�
(2.14)

The second term in equation (2.14), the \cross term" is problematic, as without it the

minimization decouples into two \simple" minimizations as we show. The solution to min-

imizing the cross term is to make it zero, this is accomplished by requiring that all of our

search vectors be A conjugate, that is pTi Apj = 0 if i 6= j. Thus we have a speci�cation for

our search directions.

With the cross term eliminated equation (2.14) reduces to two minimizations:

miny� (Pky) andmin�
�2

2
pTk+1Apk+1��pTk+1b. The �rst part of this minimizationminy� (Pky)

can be assumed to have already been done as we are applying the algorithm recursively;

the base case of the recursion Pky = 0 is clearly minimized. The second part of the mini-

mization, after being \given" xk from the �rst part, is similar to (2.12), � = pTb=pTAp. So

20

we have an expression for � in each iteration and a speci�cation for pk+1, namely

pTk+1Apj = 0 j = 1; :::; k

Amazingly if we apply a standard Gram-Schmidt technique to calculate pk+1 by A or-

thogonalizing Axk with p1; p2; :::; pk, we �nd that we only need the �rst two terms of the

recurrence (see [27] for a complete discussion of this material), and only need one matrix

vector product per iteration.

x0 0, r0 b, p1 b, k 1 { solve Ax = b for x

while krkk2 > tol

z Apk

�k rTk�1rk�1=p
T
k z

xk xk�1 + �kpk

rk rk�1 � �kz
�k+1 rTk rk=r

T
k�1rk�1

pk+1 rk + �k+1pk

k k + 1

Figure 2.1: Conjugate Gradient Algorithm

Thus the beauty of CG is that this \orthogonality" can be maintained (in perfect

arithmetic) with a short vector recurrence, unlike GMRES, which requires that all of the

old search vectors be stored so that each new one may be orthogonalized against them [72].

We can state bounds for the convergence rate for CG as

krk+1kA�1
krkkA�1

� 2

1 + 2kp
��1

(2.15)

or

kx� xkkA � 2 kx� x0kA

 p
� � 1p
� + 1

!k
(2.16)

See [27, 61] for details of these derivations. The important point to see from this is that

the convergence rate of CG depends on the condition number of A. CG provides us with

an O
�
n3=2

�
solver for our model problem (2D Poisson); this is better than Jacobi and

Gauss-Seidel and as good as SOR (without the need to pick a parameter) but it is not good

enough for use in very large problems.

21

Krylov subspace methods require that they be preconditioned in order to be e�ec-

tive - the subject of this dissertation is such a preconditioner. Just about any solver can

be used as a preconditioner for a Krylov subspace method. Many of the classical matrix

splitting methods of x2.3.1, and their generalization in x2.4 are used as preconditioners for

the Krylov subspace smoothers for our numerical experiments throughout this dissertation.

Thus preconditioned Krylov subspace methods are central to the subject of this disserta-

tion, but before we look at preconditioning we need to look at the convergence properties

of CG.

In addition to CG for SPD matrices there are may other Krylov subspace methods

for standard matrices classes (i.e., inde�nite, semide�nite, symmetric and unsymmetric),

see [27] and the references therein for a full discussion of these methods.

2.3.3 Preconditioned Krylov subspace methods

In the last section we found that the convergence rate of CG (and all other Krylov

subspace methods) is dependent on the condition number of the matrix. A natural way to

try to improve the convergence rate is to transform the system to an \easier" one, solve it,

and then go back to the original system; that is instead of solving Ax = b we want to �nd

an M and solve M�1Ax =M�1b, or in symmetric form

M�1=2AM�1=2M1=2x =M�1=2b (2.17)

One can substitute equation (2.17) into Figure 2.1; after some algebraic manipulations one

can eliminate the M�1=2 and M1=2 terms, and get the algorithm in Figure 2.2.

The objective now resembles that of matrix splitting methods - �nd an M whose

inverse is cheap to apply and is relatively e�ective at reducing the condition number of

the operator M�1A. We can look at the Krylov subspace method as an accelerator for an

iterative solver. We have observed, in informal numerical experiments, that the use of a

Krylov subspace method accelerator is almost always economically advantageous (in terms

of total execution time for the solve); we therefore only consider this architecture, in our

numerical experiments, as there are many other interesting parameters to investigate. So we

are still left with a question of �nding a good preconditioner for a Krylov subspace method.

22

x0 0, r b, k 0 { solve Ax = b for x

while krk2 > tol

z M�1r

�k rTz

if k = 0

p z

else

p z + (�k=�k�1) p

z Ax

� �k=p
Tz

x x+ �p

r r� �z

k k + 1

Figure 2.2: Preconditioned Conjugate Gradient Algorithm

2.3.4 Krylov subspace methods as projections

We can alternatively look at Krylov subspace methods as a projection of the

problem onto a subspace. We often work with projections in the analysis of domain de-

composition methods; but for now we can consider projections as an approximation u in a

\low" dimensional space K, to a function u� in a \high" dimensional space V . If

� K is a closed subspace of V

� V is complete

� Our �nite element operator is V-elliptic [24]

then we can de�ne a unique approximation that has an error that is orthogonal to the

solution after we equip L with an inner product. Thus we can use the Galerkin condition

from x2.2 and insist that the approximate solution satis�es (u� u�)T � v = 0 j 8v 2 L, or
in the case of CG require that u minimizes (u� u�)T � (Lu � b).

In the case of symmetric systems it is natural to let L = K, and for the positive

de�nite case this can be accomplished with little cost. We observe later that the cost of

�nding a projection is a linear solve of the order of the size of the subspace. The reason for

23

the e�ciency of CG is that the linear system is tridiagonal and hence very cheap to solve,

see [27] for details.

2.4 One level domain decomposition

Domain decomposition methods are a popular approach to construct iterative

solvers, especially in multiprocessor environments. Domain decomposition (of the physical

domain) is a natural method to consider in a parallel computing environment because the

�nite element mesh invariably needs to be partitioned. Thus reasonable to use this structure

in the solver, so as to exploit data locality.

Domain decomposition methods have been used by engineers for decades to build

direct solvers and iterative solvers alike. Direct domain decomposition solvers are known as

nested dissection node ordering or substructuring, iterative solvers are known as iterative

substructuring or Schur complement methods.

Domain decomposition is important in the history of solvers for �nite element

matrices, but is also pertinent to this dissertation for two reasons. First, one of the simplest

domain decomposition methods is a generalization of Jacobi's methods introduced in x2.3.1;
namely use diagonal blocks of the matrix as the preconditioning matrix and use a direct

solver on each of these blocks - we often block Jacobi solvers as a component in our solver.

The second reason for interest in domain decomposition methods is that during the past

ten years a powerful method has been developed in the domain decomposition community

for the analysis of a wide range of iterative solvers [31], including multigrid methods, on

unstructured meshes. See [78] for an introduction to these methods and the references

therein for the literature in this area.

This chapter introduces the background and notation useful in the analysis of

our, and most, iterative solvers for discretized PDEs; additionally the central concepts

of restrictions and interpolation are introduced here as they are used extensively in the

description of our methods.

2.4.1 Alternating Schwartz method

This section introduces the classical domain decomposition methods for solving

PDEs, starting with Schwarz's method from the 19th century up to the modern numerical

methods. This section is thus intended to provide a basis for the discussion of the analytical

24

domain decomposition techniques by providing simple, concrete and intuitive examples

of domain decomposition methods. The purpose of this section is to provide historical

background of many of the components of our solve as well as introduce some of the basic

concepts that we use throughout this dissertation. This discussion follows the presentation

in [78].

The earliest domain decomposition method was introduced by Schwarz in 1870 to

solve for the continuous solution of a PDE. Schwarz's method was not intended as a numer-

ical method but as a way of solving elliptic PDEs composed of the union of simple domains

for which explicit solutions were available. Thus this section will work with continuous

functions and linear operators and not their discretized counterparts, vectors and matrices.

An example of the classical alternating Schwarz method proceeds as follows. Given

a domain
 =
1 [
2, shown in Figure 2.3, on which we wish to solve the elliptic PDE

Lu = f in
 (2.18)

u = g on @
 (2.19)

For instance L could be the Laplacian operator r2, and the boundary conditions could

be of either Dirichlet or Neumann type, though here we consider only Dirichlet boundary

conditions for simplicity.

ΩΩ Ω1 2

Γ
2 Γ1

Ω Ωδ δ
1

2

Figure 2.3: Schwarz's original �gure

@
 is the boundary of
 and closure of
 is denoted by �
 =
 [@
. The

arti�cial boundary �i of subdomain
i is de�ned as the part of @
i within
. We often

25

have use for the boundary @
in�i, that is the \true" boundary (if any) of the subdomain i.
We de�ne u

(k)
i as the current solution at iteration k on domain �
i. Also u

(k)
i j�j is de�ned

as the restriction of u
(k)
i to �j , that is the values of u

(k)
i that are on �j . Note that this type

of restriction is simply a selection of certain values or embedding.

The classical alternating Schwarz method can be stated as, select an initial guess

for u0, then iteratively for k = 1; 2; ::: solve the boundary value problem

Lu
(k)
1 = f in
1

u
(k)
1 = g on @
1n�1

u
(k)
1 = u

(k�1)
2 j�1 on �1

for u
(k)
1 , then solve the following for u

(k)
2

Lu
(k)
2 = f in
2

u
(k)
2 = g on @
2n�2

u
(k)
2 = u

(k)
1 j�2 on �2 (2.20)

and continue until the solution has converged.

In e�ect this method solves a small subdomain problem with boundary conditions

augmented by the restriction of current solutions on other subdomains. Notice that this

construction is similar to Gauss-Seidel iterations in x2.3.1 though instead of solving for just

one equation at each substep in the outer iteration we solve a subdomain boundary value

problem; also notice that if, in equation (2.20), we substitute u
(k�1)
2 for u

(k)
2 we get a Jacobi

like iteration. Though this is a continuous method, and is not explicitly used in our work,

it does provide intuition as to how domain decomposition methods work.

2.4.2 Multiplicative and additive Schwarz

The section describes a discrete version of the Schwarz method of the last section,

and the additive variant. The next chapter extends these methods to include a coarse grid

correction used in multilevel methods.

26

Figure 2.4 shows a mesh with two subdomains.

Ω1

Ω2

Figure 2.4: Two Subdomains with Matching Grids

For simplicity, assume one node has a Dirichlet boundary condition and the non-

homogeneous term moved to the right hand side; also order the nodes with the interior

nodes of the �rst subdomain �rst, then the �rst subdomain's boundary nodes, followed by

the nodes common to both subdomains, as so on. The vector of unknowns look like this

u = (u
1n�
2
u�2 u
1\
2

u�1 u
2n�
1
)

Figure 2.5 shows the resulting graph of the matrix, with this node ordering (now

we only consider the closure of the domains and this drop the \bar" notation).

1 4

6

7

8

9

10

11

12

13

14

2

3

Ω
1

Ω
2

5

Figure 2.5: Matrix Graph of the Two Subdomain Problem

At this point it is useful to introduce some notation that we use extensively - the

restriction operator. Figure 2.6 shows two overlapping submatrices A
1
and A
2

. We want

to have an algebraic expression to de�ne these submatrices, as in general they are not so

simple (i.e., contiguous). We can construct A
1
by A
1

 R1AR
T
1 , here R1 is an jA
1

j� n

27

0 5 10 15

0

5

10

15

nz = 70

Ω

Ω

1

2

A

A

Figure 2.6: Matrix for the Two Subdomain Problem

boolean matrix with a very simple form [I 0]. Thus if we had chosen a di�erent ordering

of the matrix A then R1 would be a permuted identity matrix with zero columns inserted

for the nodes that are not in
1. These boolean or embedding operators are su�cient to

describe these simple one level domain decomposition methods - multilevel methods require

that non-boolean restriction operators be used but they retain this basic structure.

We can state some simple iterative solvers based on these decompositions. Figure

2.7 shows the multiplicative Schwarz algorithm, to solve Ax� = b for x�.

k 0, x0 0

while kb� Axkk > tol

xk+1=2 xk +RT
1

�
R1AR

T
1

��1
R1 (b� Axk)

xk+1 xk+1=2 +RT
2

�
R2AR

T
2

��1
R2

�
b�Axk+1=2

�
k k + 1

Figure 2.7: Multiplicative Schwarz with Two Subdomains

28

The additive Schwarz algorithm is shown in �gure 2.8.

k 0, x0 0

while kb� Axkk > tol

rk b� Axk

xk+1 xk +RT
1

�
R1AR

T
1

��1
R1rk + RT

2

�
R2AR

T
2

��1
R2rk

k k + 1

Figure 2.8: Additive Schwarz with Two Subdomains

The additive form of the alternating Schwarz method is a bit cheaper as a new

residual is not formed at each subdomain. The additive form is also more parallelizable as

the solves on each subdomain are independent of each other, only the update of the solution

vector need be synchronized. However multiplicative forms converge faster than additive

methods.

29

Chapter 3

Multilevel domain decomposition

This chapter extends the discussion of the mathematical and algorithmic under-

pinnings of domain decomposition and multigrid methods from the previous chapter. The

one level methods, discussed in the previous chapter, are not e�ective enough in and of

themselves. The shortcomings of one level methods can be overcome by the use of multiple

levels or multiple scales of resolution of the problem.

3.1 Introduction

All \optimal" methods have some multilevel component; the need for multiple

levels can be understood in many ways. For one, take the linear discretization of the

Poisson operator on a regular mesh and a typical row (for vertices with Neumann boundary

condition) of the form (: : :� 1 : : :� 1; 4;�1 : : :� 1); notice that the rows add up to zero.

Now, the update, or correction, d for domain i with A
i = A
i RiAR
T
i in the Schwarz

method with in the error en in Figure 2.7 can be written as

d = RT
i A

�1

i
Ri (b� Axn) = RT

i A
�1

i
RiA (x� � xn) = RT

i A
�1

i
RiAe

n

If the error en is constant in
i then the Schwarz updates are zero on interior or \oating"

subdomains (those without any Dirichlet boundary condition) as RiAe
n = 0. Therefore the

subdomain corrections do not correct the constant part of the error. If the error (projected

onto a subdomain) is dominated by the constant term then the block Jacobi method will

not be e�ective.

Intuitively we can see that if the local part of the global error for a subdomain

30

is \almost" constant then the global error must be smooth. These simple one level solver

methods are called \smoothers" in multigrid terminology because they are e�ective at re-

ducing non-smooth or high frequency error, thereby smoothing the error. This intuition is

not valid for all operators however, more generally these simple methods damp the high en-

ergy components of the error and so it is the low energy error that we need to be concerned

about (the energy of our solution error e being given by the bilinear form or eTAe). Thus,

for the Poisson operator, the low energy functions are these \smooth" functions because

the Poisson operator with constant coe�cients is a \smooth" operator.

Another way to divine the need for a global component in a solver is from a simple

information theoretic viewpoint. This can most easily be seen by allowing the subdomains

to degenerate to single nodes, thus transforming the Schwarz method into Jacobi iterations.

If a point load is applied at a corner of a 2D regular mesh then, as Jacobi only transfers

information via a matrix vector product with M�1K (which has the same graph structure

as A) and b, the non-zero structure of x can only advance to the neighbors of a non-zero

node in each iteration. As the shortest path to the furthest node from a corner node in a

2D mesh is about
p
2n long, we require a minimum of

p
2n iterations to get a non-zero in

all n degrees of freedom. The inverse of the Poisson operator is dense so all nodes have a

non-zero value, in general, in their solution. Thus Jacobi can not (under any circumstances)

converge, with high relative accuracy, in less than
p
2n iterations for this particular right

hand side. To remedy this situation we need to have some form of global communication in

each iteration.

The solution to this inherent limitation on the convergence rate of an iterative

solver, is to add a global correction. The global correction is a (perhaps approximate)

projection to a smaller subspace. As we see in x3.4.1 these projects are implemented with

a small(er) linear solve - we generally apply these methods recursively and only the top

(coarsest) grid is solved exactly, thus all but the penultimate grids are corrected with an

approximate projection. The subspace, from which we compute a correction, is a coarse grid

space - the construction of this coarse grid space is the primary distinguishing characteristic

of all scalable linear equation solvers.

31

3.2 A Simple two level method

To create a coarse grid (C) space the domain must �rst be rediscretized in some

fashion, but with far fewer nodes. Using the discretized domain in �gure 2.5 we can redis-

cretize. Figure 3.1 shows such a discretization after it has been remeshed.

Ω0

Figure 3.1: Matrix for the Two Level Method

With this coarse grid we can de�ne a new linear operator AC , treat this like a new

overlapping subdomain, and apply either the additive or multiplicative method from x2.4.2.
Thus, we restrict the current residual (b�Axk) up to the coarse mesh, solve for the coarse

grid correction, and interpolate the correction back to the �ne grid. With the addition of a

coarse grid we can write the multiplicative form of our two subdomain example in x2.4.2

xk+1=3 xk +RT
1

�
R1AR

T
1

��1
R1 (b� Axk)

xk+2=3 xk+1=3 +RT
2

�
R2AR

T
2

��1
R2

�
b� Axk+1=3

�
xk+1 xk+2=3 + RT

CA
�1
C RC

�
b� Axk+2=3

�
(3.1)

The restriction matrix for the coarse grid is no longer a simple boolean operator as we need

to interpolate the nodal values on the �ne mesh to multiple nodal values of the coarse mesh.

Thus we need discrete coarse grid restriction operators; �gure 3.2 show the directed graph

(in bold) of this restriction operator. Much is known about calculating interpolation values

as this is at the core of the �nite element method i.e., mapping between domains. Thus

given a shape function �I(x) (i.e., the �nite element basis function) for coarse node I , we

can calculate RIj, which is the interpolate of I at the �ne node j, by RIj = �I(j:coord)

with j:coord being the coordinate of node j.

With this construction we again have the same options as with the one level

Schwarz methods: we can use an additive form or a multiplicative form for the coarse

32

Ω0

Figure 3.2: Graph for the Restriction Matrix for the Two Level Method

grid correction. We can therefore generate four basic forms of this two level method - the

algorithm given in equation (3.1) is the multiplicative-multiplicative form i.e., multiplicative

within a level and between levels. Additionally we can symmetrize equation (3.1) and if we

use the additive method for the subdomain corrections we get the additive-multiplicative

form

xk+1=3 xk +RT
1

�
R1AR

T
1

��1
R1 (b� Axk) +RT

2

�
R2AR

T
2

��1
R2 (b� Axk)

xk+2=3 xk+1=3 + RT
C

�
RCAR

T
C

��1
RC

�
b�Axk+1=3

�

xk+1 xk+2=3 +RT
1

�
R1AR

T
1

��1
R1

�
b�Axk+2=3

�
+RT

2

�
R2AR

T
2

��1
R2

�
b� Axk+2=3

�
(3.2)

This gives us the classic multigrid form (with a block Jacobi smoother) and is the basic

approach that we utilize in our numerical experiments. We can now introduce the classic

multigrid algorithm.

3.3 Multigrid

Multigrid has been accepted for the past 25 years as being the theoretically optimal

solution method for some model problems, and a great deal of research has been focused on

applying multigrid to many types of discretized PDEs [66]. In any given year there are many

international conferences dedicated to multigrid, additionally multigrid is well represented

in domain decomposition conferences and iterative method conferences worldwide.

This chapter is concerned with providing the basic multigrid background without

the distraction of unstructured meshes and parallel computing. We discuss the classical

33

multigrid form which is a natural extension from x3.2 - although unlike most classical

presentations we assume that multigrid is used as a preconditioner. Using multigrid as a

preconditioner merely means that we are not improving a solution of Axk = b with xk , but

are �nding an approximate solution to Axk+1 = r. Additionally we enter the algorithm with

a residual on the �ne mesh, this changes the structure of full multigrid, and is explained

shortly.

We number the grids from the bottom (�ne) to the top (coarse), counter to the

practice in the classic multigrid literature; this is because we start with the �ne mesh and

work our way up to the coarse mesh, stopping when we can solve the problem directly.

Historically multigrid has been used primarily on structured meshes as one starts at the

top mesh and continues to re�ne the mesh until we have an accurate answer. Note, we will

use \top" to mean the coarse grid, even though it is at the bottom of �gure 3.4.

The primary operators used by multigrid are

� Smoother. The smoother S(A; r) is an iterative solver that is applied for only a few

iterations, or even just one iteration. The smoother must be e�ective at reducing the

error up to the frequency that can be resolved on the mesh and down to the frequency

that can be resolved on the next coarsest mesh.

� Restriction. The restriction operator R(r) must be able to map residuals to the next
coarsest grid.

� Interpolation or Prolongation. The interpolation operator P (x) must map values

(solutions) from a grid to the next �ner grid. The transpose of the restriction operator

is commonly used (i.e., P = RT).

� Coarse Grid Operator. The coarse grid operator Ai+1 must represent all of the

frequencies lower than those that can be e�ectively reduced by the smoother on this

level. More precisely, the error in the coarse grid representation of the \low" eigen-

functions of the �ne grid must be in the space spanned \high" eigenfunctions of the

�ne grid. We use a Galerkin or variational coarse grid operator as discussed above,

that is Ai+1 = RiAiPi.

34

With these components we can state the classic multigrid V-cycle in Figure 3.3.

function MGV (Ai; ri)

if there is a coarser grid

xi S(Ai; ri)

ri ri � Axi

ri+1 Ri+1(ri)

xi+1 MGV (Ri+1AiR
T
i+1; ri+1)

xi xi + RT
i+1(xi+1)

ri ri � Aixi

xi xi + S(Ai; ri)

else

xi A�1
i ri

return xi

Figure 3.3: Multigrid V-cycle Algorithm

We represent this algorithm schematically in Figure 3.4.

R

R

R

R
R

R

R

R

T

T

T

T

D

S

S

S

SS

S

S

S

R :matrix application

:Smoother application

:Direct solve

S

D

i=1

i=2

i=4

i=5

i=3

Figure 3.4: Multigrid V-cycle

35

The preconditioner, B in Figure x2.2, is MGV (A0; r). In practice it has been

universally observed that a variant of the V-cycle, full multigrid or F-cycles, provides better

solver performance. Figure 3.5 shows the full multigrid algorithm.

function FMG(Ai; ri)

if there is a coarse grid

xi FMG(Ai+1; Ri+1(ri))

ri ri � Aixi

else

xi 0

xi xi +MGV (Ai; ri)

if there is a �ner mesh return RT
i (xi)

else return xi

Figure 3.5: Full Multigrid Algorithm

And we can schematically represent full multigrid in Figure 3.6.

R

R

R

R
R

T

D

R

R
RT

T

S

S

R
R

R

R
R

R

R
R

R

R
R

R
T

T

T

R

R

R

R

R

R

T

T

T

T

T

T

T

S

S

S

S

S S

S

S

S

T
R

S S S

S

S

S

S

S

S

D D D D

R

R

R

R

R
R

T

D

R

S

D

: Smoother application

: Direct solve

: matrix application

i=2

i=3

i=4

i=5

i=1

Figure 3.6: Multigrid F-cycle

36

3.3.1 Convergence of multigrid

The intuition behind the convergence behavior of multigrid starts with the no-

tion that iterative methods, which \smooth" values of nearest neighbors on the grid, can

e�ectively reduce the high frequency, or high energy, component of the residual. Multi-

grid organizes standard iterative methods to work at varying scales of resolution so as to

allow their work to be most productive. To do this we need to be able to map residuals

and corrections between grids in an e�ective manner; and we need a coarse grid opera-

tor that represents (in tandem with these inter grid transfer operators) the low frequency

components of the error.

Informally we want the di�erence between the solution in the coarse grid space,

mapped to the �ne grid space, and the true answer on the �ne grid to have little of the

low energy components. Thus the e�ect of the coarse grid correction is to \demote" the

low frequency error to high frequency error, which can be reduced cheaply. For our model

problem (Poisson's equation in any dimension) a particular multigrid construction satis�es

these requirements extremely well. The Poisson problem is one of the few problems for

which hard bounds on the number of iterations required to achieve a speci�ed tolerance is

known. The next section sketches the proof of the convergence rate of multigrid on Poisson's

equation on a unit square.

Convergence proof outline

We sketch the proof here as it useful in understanding the frequency domain de-

composition nature of multigrid. This presentation follows that in [27]. As a model prob-

lem uses the regular 1D Poisson equation with Dirichlet boundary conditions. The optimal

multigrid algorithm for Poisson's equation is carefully constructed to reduce the error by

at least a factor of 1
9
in each iteration.

Multigrid is optimal if we use Nk = 2k + 1 nodes, with constant spacing between

grid points, in each dimension (i.e.,
�
2k + 1

�D
nodes and

�
2k � 1

�D
unknowns). The coarse

grid \picks every other node" from the �ne mesh and by the special choice of grid dimension

the end nodes remain through all of the grids. In 2D and 3D one can perform the same

procedure recursively - coarsening the edges then, starting from selected edge nodes, select

surface nodes, and so on.

The restriction (and interpolation) operators are derived from standard linear in-

37

terpolation. Thus the �rst row in the restriction matrixR isR(1; :) = [1
2

1 1
2

0 0 : : : 0].

The Galerkin form for the coarse grid operator (RART) is the same Poisson matrix scaled by

1
2
in magnitude and approximately 1

2
in size. The smoother uses a weighted Jacobi method,

similar to that introduced in x2.3.1, where R! = I � !A=2 and c! = !b=2; ! = 1 gives the

standard Jacobi operator. Let ek = xk � x� be the error in the kth iteration, and note that

with the eigendecomposition Z of A, RJ = Z (I � !�=2)ZT where � is a diagonal matrix

of the eigenvalues of A. We have

ek = R!e
k�1

= Rk
!e

0

=
�
Z (I � !�=2)ZT

�k
e0

= Z (I � !�=2)k ZT e0

so

ZTek = (I � !�=2)k ZT e0 or
�
ZTek

�
j
= (I � !�=2)kjj

�
ZT e0

�
j�

ZTek
�
j
is called the jth frequency component of the error ek . The eigenvalues

�j (R!) = 1 � !�j=2 determine how fast each component of the error decreases in each

iteration. Figure 3.7 plots �j (R!).

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

1/3

-1/3

w=1

w=2/3

w=1/2

Figure 3.7: Graph of spectrum of (R!) for ! = 1=2; 2=3; 1, N = 99

When ! = 2
3
and j > N

2
i.e., the upper half of the spectrum, j�j j � 1

3
. This means

that upper half of the error components are multiplied by 1
3
or less in each iteration.

With Figure 3.3 and by using the identity x� = R2=3x
�+ b=3 in the two steps that

apply the smoother, and the identity b�Ax� = 0 in the line that takes the residual, we can

38

construct an expression for the application of one V � cycle to the error

ek+1 = R2=3fI �RT
�
RART

��1
RAgR2=3e

k (3.3)

Note, this expression assumes, by induction, that the coarsest grid is solved exactly [18].

This expression can be nearly diagonalized with Z the eigenvector matrix of A. Equation

(3.3) is block diagonal with a particular ordering of the eigenvector matrix. The eigenvalues

of these blocks can be explicitly calculated (these blocks are 2 by 2 in the 1D case, 4 by 4

in the 2D case, and so on), see [27] and [78] for details. The eigenvalues of the matrix in

equation (3.3) are bounded by 1
9
, and thus we get nearly one digit of accuracy per iteration;

this rate is not only fast but it is completely independent of the size of the problem. This

construction is perfect in that as we go down the V � cycle we are reducing the error

uniformly by 1
3
, and as the corrections percolate back up the V � cycle they do not soil the

lower part of the spectrum in any signi�cant way, and they project their correction at least

well enough so that the smoothing step reduces the entire spectrum of the error by at least

1
9
.

Multigrid is thus completely scalable in serial, provided the amount of work per

iteration is O(n) (i.e., O(1) work for each unknown). As the work per grid is proportional to

the number of unknowns and the number of unknowns per grid decreases with a geometric

progression (i.e., 1; 1=2D; 1=4D; 1=8D; :::; 1=2D�L for L levels in D dimensions) - the amount

of work is bounded by twice the work done on the �ne grid in 1D. Multigrid is therefore an

O(n) method sequentially.

39

3.4 Convergence analysis of domain decomposition

The convergence analysis for unstructured problems is less satisfying than that

of the previous section. This is because the analysis for unstructured problems can not

provide absolute bounds on the rate of convergence, but only bounds on the condition of

the preconditioned system. With bounds on the condition number we can use the bounds

from the Krylov subspace method (x2.3.2) to give bounds on the convergence rate.

Additionally the bounds that can be derived, though impressive feats of analy-

sis, have loosely de�ned parameters (h and H) and other parameters that are di�cult to

explicitly calculate. Despite the shortcomings of this analytical framework it is quite valu-

able in providing necessary conditions for scalability, as well as for providing a theoretical

framework to compare di�erent algorithms in a rational way.

From \Domain Decomposition" [78], page 34

In order to understand the convergence behavior of domain decomposition

algorithms we need to introduce a mathematical framework. This is most easily

done in the context of Sobolev spaces and Galerkin �nite elements. Indeed,

it turns out that the basic correction steps calculated in virtually all domain

decomposition and multigrid/multilevel algorithms may be viewed as (approxi-

mate) orthogonal projections, in some suitable inner product, onto a subspace.

This observation makes possible the complete analysis of many domain decom-

position and multigrid methods : : :

x3.4.1 introduces a variational framework and projections, with the example in x2.2.1,
and show that the correction RT

1

�
R1AR

T
1

��1
R1rk in equation (3.2) in the multiplica-

tive Schwarz algorithm is an example of a projection. x3.4.2 will review or introduce the

components required to describe, and analyze, all domain decomposition methods with the

convergence theory described in x3.4.3.
This presentation follows that in [78].

3.4.1 Variational formulation

We recall the steady state Poisson's equation from x2.2.1 and consider only homo-

geneous Dirichlet boundary conditions. The strong form is

r � (kru) + f = 0 in

u = 0 on @

40

and the weak form

a (v;u) = f (v) 8v 2 H1
0 (
)

with

a (v;u) =

Z

rv � (kru)

f (v) =

Z

v � f

Within this variational framework we can demonstrate that the corrections in the

multiplicative Schwarz methods are projections of the error. Let un be the solution at the

end of the nth iteration, and let un+1=2 be the solution at the end of the substep in iteration

n+ 1. Then the one level (continuous) Schwarz algorithm can be written as

L
�
un+1=2 � un

�
= �Lun + f in
1

un+1=2 � un = 0 on @
1

un+1=2 � un = 0 on
2n
1

and

L
�
un+1 � un+1=2

�
= �Lun+1=2 + f in
2

un+1 � un+1=2 = 0 on @
2

un+1 � un+1=2 = 0 on
1n
2

This can be expressed in weak form as

a
�
un+1=2 � un;v

�
= f (v)� a (un;v) un+1=2 � un 2 H1

0 (
1) ; 8v 2 H1
0 (
1) (3.4)

and

a
�
un+1 � un+1=2;v

�
= f (v)� a

�
un+1=2;v

�
un+1 � un+1=2 2 H1

0 (
2) ; 8v 2 H1
0 (
2)

(3.5)

Let en = u� � un be the error in the nth iterate un, then

a
�
un+1=2 � un;v

�
= a (en;v) 8v 2 H1

0 (
1)

and

a
�
un+1 � un+1=2;v

�
= a

�
en+1=2;v

�
8v 2 H1

0 (
2) (3.6)

41

De�ne the projection Tie, in the inner product a (�; �), by

a (Tie;v) = a (e;v) Tie 2 H1
0 (
i) ; 8v 2 H1

0 (
i) (3.7)

At each half step the corrections, un+1=2 � un and un+1 � un+1=2 calculated in equation

(3.6) are projections of the error onto the subspaces H1
0 (
1) or H

1
0 (
2).

Formally a projection of e onto a subspace H1
0 (
1), in the inner product a (�; �)

is de�ned as

e1 = Pe = arg inf
v2H1

0
(
1)
ke� vka (3.8)

We can alternatively de�ne Pe by the following: Find e1 2 H1
0 (
1) so that

a
�
e1;v

�
= a (e;v) 8v 2 H1

0 (
1)

or equivalently

a
�
e1 � e;v

�
= 0 8v 2 H1

0 (
1)

It is now simple to show that (3.7) is the minimizer of (3.8), and thus our correction

in the Schwarz methods are in fact projections of the error on to a subdomain. These

projections have the attractive property that they �nd a correction, in a given subdomain,

that is closest to the error in the A, or energy, norm. The next section shows that this

indeed the case for the discrete forms of the Schwarz methods.

Matrix representation of projections

In x2.2 we constructed the �nite dimensional subspace S = span (�k) � H1
0 (
) ; k =

1; 2; :::; n, we now replace H1
0 (
1) above by S. After selecting domains
i; i = 1; 2; : : : ; p,

de�ne the sets f�(i)k g i.e., those functions in S with support in
i. Express u 2 S as

u =
P

k uk�k and let A be the sti�ness matrix and Aij = a(�i; �j). It is possible to de-

rive an explicit representation for Tiu in equation (3.7). Let w = Tiu =
P

k wk�
(i)
k , then

equation (3.7) can be expressed as

a

 X
k

wk�
(i)
k ; �

(i)
l

!
= a

 X
k

uk�k ; �
(i)
l

!
8�(i)l

42

X
k

wka
�
�
(i)

k ; �
(i)

l

�
=
X
k

uka
�
�k ; �

(i)

l

�
8�(i)l

Recall that the restriction matrix Ri maps the coe�cients of u to coe�cients of

the local subdomain i, thus a
�
�
(i)
k ; �

(i)
l

�
= RiAR

T
i . We can now express a discretized form

of our projection operator

A
iw = (RiAR
T
i)w = RiAu

or

w = (RiAR
T
i)

�1RiAu

Hence the matrix representation of the operator Ti is given by

Ti = RT
i (RiAR

T
i)

�1RiA

Note, this is the coarse grid correction term in equation (3.3), applied to the error.

3.4.2 Domain decomposition components

We have described some of the basic components of domain decomposition meth-

ods in functional form. This section list the components necessary to specify all domain

decomposition methods, some of which have been introduced previously and some of which

are introduced here.

Domain decomposition polynomials

Recall the correction step in the multiplicative Schwarz algorithm in �gure 2.7 is

given by

xk+1=2 xk +RT
1

�
R1AR

T
1

��1
R1 (b� Axk)

xk+1 xk+1=2 + RT
2

�
R2AR

T
2

��1
R2

�
b�Axk+1=2

�

De�ne Bi by R
T
i

�
RiAR

T
i

��1
Ri. The operator Bi restricts the residual to one subdomain,

solves for a correction in this domain and then interpolates the correction back to the global

space. We can rewrite the two domain multiplicative Schwarz correction as

xk+1 xk + (B1 +B2 �B2AB1) (b�Axk) (3.9)

We can interpret multiplicative Schwarz as a Richardson iterative procedure with the pre-

conditioner B given by B = B1 + B2 � B2AB1. B can be thought of as a polynomial in

43

the residual r. Note that the utility of using a Krylov subspace method is now evident as

CG requires very little additional cost and provides a solver with well de�ned optimization

properties - precisely the optimization properties described in section x3.4.1 for the Schwarz
methods.

The form of the multiplicative Schwarz method for the error

ek+1 ek + (B1 + B2 � B2AB1)Ae
k

We use the projection operators from x3.4.1 and �nd an expression for the error reduction

operator of the method T = BA = T1+T2�T2T1 = I�(I�T1)(I�T2) with B = B1+B2�
B2AB1. We can express the e�ect of a method on the error in the form of polynomials in Ti,

with i = 0; 1; 2; :::; p. T0 refers to the coarse grid in our convention. For the multiplicative

multilevel method we have T = BA = P(T0; T1; :::; Tp) = I�(I�Tp) � � �(I�T0). The art of
designing preconditioners is to design these polynomials such that they are well conditioned

operators with respect to the cost of their application

Auxiliary bilinear forms

When an approximate solver is used in equation (3.4) it becomes

a1

�
un+1=2 � un;v

�
= f (v)� a (un;v) un+1=2 � un 2 S; 8v 2 S1

likewise equation (3.5) becomes

a2

�
un+1=2 � un;v

�
= f (v)� a (un;v) un+1=2 � un 2 S; 8v 2 S2

That is we do not require that we have the same bilinear form on the subdomains, be they

coarse grids or subdomains, and can we can therefore use auxiliary bilinear forms.

Interpolation operators

The existence of subdomains requires interpolation operators to recover the sub-

domain corrections. To this end we de�ne the set of operators Ii : Si! S.

Domain decomposition components

We now have all of the components necessary to de�ne any particular domain

decomposition method

44

� A set of subspaces Si.

� A set of interpolation operators Ii.

� A set of auxiliary bilinear forms ai(�; �).

� The polynomial P(T0; T1; :::; Tp) to prescribe the order of the application of the sub-

domain corrections.

The next section applies the formalism of this section to an abstract analysis applicable to

all domain decomposition methods.

3.4.3 A convergence theory

The goal of this section is to sketch an abstract convergence theory for domain

decomposition methods. These methods are composed of somewhat intuitive parameters

that make the utility of multigrid evident as well as serve to provide an understanding of

the convergence characteristics of domain decomposition methods on unstructured meshes.

To begin with we assume, for simplicity, that we have symmetric positive de�nite

operators and work with operators and functions rather than matrices and vectors.

First, the abstract convergence theory makes extensive use of the following lemma.

LEMMA 1: De�ne: T =
P

iTi, Then

a(T�1u;u) = min
ui2Vi; u=

P
i
Iiui

X
i

ai(ui;ui)

See [78] for a proof of this.

The abstract convergence theory for symmetric positive de�nite problems centers

around three parameters which measure the interaction of the subspaces Vi and the bilinear

forms ai(�; �) These parameters are presented in the form of assumptions.

Assumption 1: let C0 be the minimum constant such that 8u 2 V; 9u =P
i Iiui;ui 2 Vi, with X

i

ai(ui;ui) � C2
0a(u;u)

If C0 can be bounded independently of the grid parameters (size of elements and number

of subdomains) then the Vi are said to provide a stable splitting of V. This quantity

a(u;u) is referred to as the energy of u. A value of 1 is desirable for C0 - thus we want

the subdomain spaces to have minimal energy. This assumption together with Lemma 1

45

provides a lower bound (C�2
0) on the spectrum of T =

P
iTi - for the additive Schwarz

operator. Note, multigrid is a stable splitting and the coarse grid functions have relatively

low energy because the linear �nite element shape functions (hat functions) are somewhat

\smooth".

Assumption 2: De�ne: 0 � Eij � 1 to be the minimal value that satis�es

ja(Iiui; Ijuj)j � Eija(Iiui; Iiui)1=2a(Ijuj ; Ijuj)1=2

8ui 2 Vi;uj 2 Vj ; i; j = 1; : : : ; p

De�ne: � (E) to be the spectral radius of E . Note, we do not include the coarse grid space

V0, in this de�nition. This parameter is in some sense the measure of orthogonality of the

subspaces. When Eij = 0 the subspaces Vi and Vj are orthogonal; when � (E) = 1 we

have the usual Cauchy-Schwarz inequality, and for 0 < � (E) < 1 we have a strengthened

Cauchy-Schwarz inequality. A value of 1 is desirable for � (E).
Assumption 3: let ! 2 [1; 2) be the minimum constant such that 8ui 2Vi; i =

0; : : : ; p,

a(Iiui; Iiui) � !ai(u;u)

This parameter refers to quality of the subdomain solves (! = 1 corresponds to exact

subdomain solves). This assumption also restrains us from simply scaling ai(�; �) to decrease
C0. Note, our coarse grid subdomains are recursive applications of multigrid, thus ! 6= 1,

except on the penultimate grid, though as we use a direct solver on the local subdomains

! = 1 .

For a linear operator L, which is self adjoint with respect to a(�; �), we use the

Rayleigh quotient characterization of the extreme eigenvalues.

�Amin(L) = min
u6=0

a(Lu;u)

a(u;u)
; �Amax(L) = max

u6=0
a(Lu;u)

a(u;u)

The condition number of L is thus given by �Amax(L)=�
A
min(L). As the bound on the number

of iteration of the conjugate gradients method is proportional to the condition number of the

preconditioned system BA, the abstract convergence bounds are derived by using Lemma 1

and the three assumptions to �nd expressions for this condition number �Amax(L)=�
A
min(L).

With this machinery we can state the bound on the condition number of the

abstract additive Schwarz method, see Lemma 3 and Lemma 4 in [78] for the derivations

K(BA) � ![1 + �(E)]C2
0

46

and for the abstract multiplicative Schwarz we have

K(BA) � [1 + !2�(E)2]C2
0

2� !

Lemma 1 in [78] shows that for the two level overlapping Schwarz methods (additive

or multiplicative), with exact subdomain solves and subdomain overlap width of order H

(the subdomain size), the condition number of the preconditioned system independent of

H and h (the scale of discretization). Thus, this particular form of multigrid has optimal

convergence characteristics within the context of the abstract convergence theory.

47

Chapter 4

High performance linear equation

solvers for �nite element matrices

The previous chapter introduced the ingredients used in multilevel iterative equa-

tion solvers. This chapter completes the context in which our work resides by discussing

the particular methods that have been developed for the large unstructured sparse matrices

that are of interest to the �nite element community. Scalable solvers for unstructured �nite

element problems is an active area of research. This section provides a brief overview of

current promising methods.

4.1 Introduction

We are interested in scalable technology i.e., we are interested in methods that have

the potential to run in time O(n) sequentially and polylogorithmically in parallel (O(logk n)

for a constant k). Thus, we look only at multilevel methods.

We segregate the major methods in three (somewhat arbitrary) categories: geo-

metric multigrid, algebraic multigrid, and domain decomposition methods. We distinguish

between algebraic (x4.2) and geometric (x4.3) multigrid methods by calling a method alge-

braic if it uses the matrix values in the construction of its restriction operators. We also

discuss notable domain decomposition methods that are not multigrid methods (x4.4).

48

4.2 Algebraic multigrid

Again, we de�ne algebraic methods as methods that use the values of the ma-

trix entries in the construction of the multigrid restriction operators. Algebraic multigrid

methods are an active area of research within the multigrid community as they provide an

avenue toward \black box" scalable solvers for PDEs on unstructured meshes. There are

three components to an algebraic (or indeed any) unstructured multigrid method: selection

criterion for the coarse grid \points", construction of the restriction (and interpolation) op-

erators or functions, and the method for construction of the coarse grid operators. The Ai+1

coarse grid operators, in algebraic methods, are usually formed in the standard Galerkin

or variational way (Ai+1 = RiAiR
T
i). Thus, the coarse grid point selection and restriction

function formulation are the only distinguishing aspects of an algebraic method.

Algebraic methods were �rst introduced by Ruge in 1986 [71], and tested on �nite

element matrices including thin body elasticity and incompressible materials. The results of

these early algebraic methods were not very promising but they did set the stage for e�ective

modern methods that we discuss in this section. Before we describe these algorithms we

describe the general approach that many of these methods employ.

Many of the algebraic methods that we are aware of use some type of \heavy edge"

(edges are o�-diagonal sti�ness matrix entries) heuristic to \agglomerate" vertices in the

selection of the coarse grid point set [83, 32] (much like the method in [19] discussed in x4.3).
These methods intend to keep tightly coupled vertices connected to each other via maximal

matching algorithms [32] or \strongly coupled neighborhood of a node" [83]. Once these

small (algebraic) regions have been de�ned interpolation functions, with compact support,

are then constructed in some fashion.

4.2.1 A promising algebraic method

Vanek et. al. [83] constructed an algebraic algorithm that is particularly good at

handling thin body elasticity and lightly supported structures e.g., a plate with Dirichlet

boundary conditions on a small portion of the boundary. The algorithm proceeds as follows:

� Construct strongly coupled neighborhood of nodes - this approach is meant to mimic

the behavior of semicoarsening [28] for anisotropic and stretched grids.

49

� Use these groups to construct a constant interpolation function, that is a function

with a constant value at all of the vertices in the group and zero everywhere else.

These functions are the translational rigid body modes for the group of vertices.

� These functions are not ideal as they have very high energy (i.e., a(u;u) is large),

this results in a high bound on the convergence rate via the C0 term of \assumption

1" in (x3.4.3). This is because these functions are \sharp" - a natural approach is to

\smooth" these functions with a simple iterative scheme (i.e., smoother in multigrid

terminology). Notice though that the support of these functions grows by one \layer"

of vertices in each iteration, thus the overuse of this smoothing results in high com-

putational complexity in applying them and more importantly a higher complexity

of the coarse grid operators as they are constructed from the �ne grid operator and

these interpolation operator. Vanek et. al. thus apply only one step of the smoother

(using a slightly altered operator) to produce the \simple" version of their method.

� For problems in elasticity, and fourth order problems, their results are dramatically

improved with the use of geometric information in the form of what seems to amount

to vertex coordinates. The vertex coordinates are used to orthogonalized their initial

guess against user-provided polynomials or against the rigid body modes that can be

inferred from these vertex coordinates. This approach of removing the rigid body

modes is similar to many successful methods [19, 77, 63].

4.3 Geometric approach on unstructured meshes

To apply classic multigrid techniques to an unstructured grid one is faced with two

main design decisions. Recall from x3.3 that for regular grids, the coarse grids are known a

priori, hence the restriction/interpolation and coarse grid operators are known implicitly.

For unstructured grids however the coarse grids must be explicitly constructed - after which

standard �nite element shape functions can be used to construct the restriction operator.

The �rst design decision is whether the coarse grids are provided by the �nite element code,

or are constructed within the solver from the �ne mesh.

The second decision, that often follows from the �rst, is whether to construct

the coarse grid operators algebraically (Galerkin coarse grids) or let the �nite element

implementation generate the coarse grid operators. There are advantages and disadvantages

50

in either approach. The Galerkin approach is harder to implement e�ciently and requires

more communication (as an \element" can not be redundantly calculated since there are

no explicit elements). On the other hand the Galerkin approach is more robust because

there is no need to take derivatives of the coarse grid shape functions; thus the coarse

grids need not be as \good" e.g., zero volume elements are allowed since they do not have

any �ne grid vertices within them by construction. Also nonlinear elements can be more

easily accommodated as some element formulations (e.g., large deformation plasticity) are

not robust with poorly proportioned low order tetrahedra. Nonlinear materials can be

accommodated with Full Approximation Storage (FAS) methods [13, 40] where the current

solution and right hand side are restricted to the coarse mesh and not just the current

residual - the coarse grid elements thus retain state variables in nonlinear materials.

An additional advantage to the Galerkin approach with nonlinear problems is that

regions of localized softening may not appear on the coarser grids if a new �nite element

problem is formed. However with the Galerkin approach a region of localized nonlinearity

will contribute to the coarse grid sti�ness matrix. Thus Galerkin coarse grids provide, in a

sense, a higher order of approximation as they sample the function (on the �ne grid) at more

points. Our method is novel in that it constructs a geometric coarse grid automatically,

thus relieving the �nite element user for this burden; we use Galerkin coarse grids because

of their desirable properties and as they can be constructed automatically within the solver.

4.3.1 Promising geometric approaches

The work in applying geometric forms of multigrid to unstructured problems in

continuum mechanics has come primarily from the engineering community. Many of these

methods require an explicit �nite element mesh for the coarse grids, supplied by the user.

Most of this work uses methods that require that coarse meshes (indeed the entire problem)

be provided by the user; e.g., see [30] for second order PDEs, [39] for fourth order PDEs,

and for nonlinear problems [40, 51, 69] (note [69] uses Galerkin coarse grids). These meth-

ods have the same structure as classical multigrid methods (x4.3), as does our method, and
good results can be achieved for the problems that can be addressed with these methods

(i.e., problems where the coarse meshes can be e�ectively constructed). These methods

have practical di�culties on large problems with complex boundaries and material inter-

faces, as the (small) size of the coarse grids, required for e�ciency, can be so small that the

51

geometry of the original problem can not be well represented. Thus some type of approx-

imate mesh must be constructed, for these coarse problems, but a mesh generator is not

in general equipped to produce such meshes. These methods are e�ective however when

the geometry/scale of the problem is such that all of the coarse meshes can be e�ectively

constructed (and the user is willing to do so).

Another method that falls into our de�nition of geometric multigrid but could also

be called an algebraic method is that of using rigid body modes (Bulgakov et. al.[19]), in

the construction of the restriction operators which are used for the standard Galerkin coarse

grid operators. This method is notable in that it has an algebraic architecture so that the

user must only provide the �ne mesh. This method proceeds by partitioning vertices in the

�ner mesh into small sets of connected vertices - these sets then produce a coarse grid space

with constant interpolation. The displacement and rotational rigid body modes of these

aggregates is then used to provide interpolation values from the �ne (aggregated) vertices

to the coarse vertex. This method is similar to that described in [83] with the addition of

rotational modes, discussed in x4.2.
A theoretical drawback of this approach is that the (discrete) interpolation func-

tions have disjoint support, the actual interpolation functions have high energy, and the

constant C0 in \assumption 1" of x3.4.3 is very large. The numerical results however, show
promising results.

4.4 Domain decomposition

As noted previously, domain decomposition methods have a rich history in the

structural engineering community [70] as a way of organizing the direct solution of large

complex structures. These methods, also known as nested dissection vertex ordering factor-

izations, can bene�t from the reuse of factorizations from duplicate substructures. These

direct methods explicitly form a Schur complement - its factorization being the primary cost

of these methods. Multilevel domain decomposition methods use a two level scheme such

as Keyes [55] for uid problems, and rely on a powerful overlapping domain decomposition

smoother to ameliorate the e�ects of using a single (very) coarse grid. In the past 15 years

iterative solutions of the Schur complement have been investigated extensively (see [63] and

the references therein). Here we mention only one method which has been well developed

and tested on structures problems.

52

4.4.1 A domain decomposition method

The �nite element tearing and interconnect method (FETI) developed by Farhat

et. al.[35, 34] is an iterative substructuring method that \tears" the monolithic problem into

a series of subdomains. These subdomains are \interconnected" via Lagrange multipliers -

thus the Schur complement is only solving for the Lagrange multipliers (these become the

primary variables in the solve).

As the subdomains are given Neumann boundary conditions on the arti�cial (i.e.,

�i in x2.4.1) the subdomain are singular in general. Thus, a pseudo-inverse [27] is used for

the subdomain solves. The resulting Schur complement equations need to be augmented

by applying a constraint, again applied with Lagrange multipliers, that the applied load

minus the Lagrange multiplier (on each oating subdomain) is orthogonal to the rigid body

modes of the subdomains. Thus the Schur complement equations must be augmented with

Lagrange multipliers to enforce the rigid body constraint. This �nal set of equations is

solved with a projected conjugate gradient algorithm on the \primary" Lagrange multipliers

where the rigid body component of the residual is projected out in each iteration.

Preconditioning is required for the original Schur complement only and can be

implemented using any of the standard iterative substructuring methods [78]. Thus the

FETI method is a non-overlapping domain decomposition method in the dual space of the

problem. The drawback of FETI is that the coarse grid is not in the same form as the �ne

grid and hence FETI can not be applied recursively - this fact prevents one from developing

an optimal complexity multilevel FETI algorithm by simply solving the coarser problems

by another application of FETI.

53

Chapter 5

Our method

This chapter, and the numerical results in chapter 6, describe and discuss the core

issues of our algorithms in terms of convergence rates, serial performance, and some simple

PRAM parallel complexity. The second half of this dissertation (chapter 7 to the end)

discusses parallel performance issues in more depth and veri�es our claim of scalability with

performance results with our largest test problems.

This chapter discusses our main contributions to serial multigrid methods for 3D

�nite element problems on unstructured grids. We have developed heuristics to optimize

the quality of the vertex sets that are promoted to the coarse grid at all level in multigrid,

and techniques to modify the Delaunay tessellation on these sets, to optimize the solu-

tion time for solid mechanics problems on unstructured �nite element meshes with large

jumps in material coe�cients, complex geometries, thin body domains, and poorly shaped

elements. This chapter also discusses our new practical and highly optimal (in PRAM)

parallel maximal independent set algorithm.

5.1 Introduction

This chapter discussed the technical details of the multigrid method that we use

and is the core of this dissertation. As we have seen in x3.3 multigrid is a very powerful solu-
tion method. While multigrid is used extensively for structured meshes, the use of multigrid

on unstructured meshes is less wide spread. This is due to the fact that the construction of

unstructured meshes is a challenging endeavor. Thus, the e�ective construction of coarse

grids for unstructured problems is not a well developed subject, though an active area of

54

research, and is the primary goal of this dissertation.

Our work is based on a method developed by Guillard [44], and independently by

Chan and Smith [23]. This method relies on

� Maximal independent sets to automatically select vertices to be \promoted" to the

next coarse grid,

� Automatic mesh generation techniques to construct the coarse grids, using these ver-

tices,

� Coarse grid spaces constructed with �nite element shape functions,

� Galerkin coarse grid operators.

Our approach has the advantage that it is relatively independent of the �nite element

implementation, i.e. the solver interface with the �nite element code is relatively small.

The �nite element code need only provide nodal coordinates as well as the sti�ness matrix

itself. We also use element connectivity information and material type indices (to identify

material interfaces). This method can thus be interfaced with an existing �nite element

code with relatively little di�culty, as the �nite element code need only provide the �nite

element mesh to the solver.

Solvers should be highly modular to be useful to the �nite element community.

This is of primary importance as the �nite element codes are large and complex systems

that have, in many cases, been developed over decades. The method that we use satis�es

our need for a highly modular and \optimal" �nite element solver.

Our method was previously developed in serial for 2D linear elasticity applications.

We have extended the method to parallel computers for applications in 3D continuum

mechanics. The method has on four basic components:

1. Coarsening: Multigrid's coarse grids should capture the low frequency eigenvectors

e�ectively. Maximal independent sets (MISs) are often an e�ective, and popular,

heuristic for capturing the low energy modes of unstructured �nite element problems.

We describe a new algorithm for the parallel construction of an MIS in x5.2 [2], as

well as a set of heuristics to improve the quality of the MIS in x5.3[1]. Note that

there is no fundamental reason to \promote" vertices on the �ne mesh to be in the

coarse mesh, i.e. multigrid does not require \node-nested" coarse grids, see [23] for

55

numerical experiments with dual coarse grids; also, we take advantage of this in one

of our methods.

2. Mesh: After the vertices have been created we need a mesh; the mesh is used to

construct the �nite element function space. Thus we need a mesh generator; our

mesh generation is discussed in x5.4.

3. Restriction/Interpolation Operators: After the coarse meshes are created one

can use standard �nite element shape functions for the restriction and interpolation

operators. This is described in x5.5.

4. Coarse Grid Operators: Coarse grid operators can be constructed in one of two

ways as discussed in x4.3. x5.6 describes the construction of Galerkin coarse grid

operators on parallel computers.

Also, general issues of smoothers (or preconditioners for our smoothers) are discussed in

x5.7 .

5.2 A parallel maximal independent set algorithm

An independent set is a set of vertices I � V in a graph G = (V;E), in which

no two members of I are adjacent (i.e. 8v; w 2 I; (v; w) =2 E); a maximal independent set

(MIS) is an independent set for which no proper superset is also an independent set. The

parallel construction of an MIS is useful in many computing applications, such as graph

coloring and coarse grid creation for multigrid algorithms on unstructured �nite element

meshes. In addition to requiring an MIS (which is not unique), many of these applications

want an MIS that maximizes a particular application dependent quality metric. Finding

the optimal solution in many of these applications is an NP-complete problem i.e., they

can not be solved in polynomial time or can be solved by a nondeterministic(N) machine in

polynomial(P) time [49]; for this reason greedy algorithms in combination with heuristics

are commonly used for both the serial and parallel construction of MISs. Many of the graphs

of interest arise from physical models, such as �nite element simulations. These graphs are

sparse and their vertices are connected to only their nearest neighbors. The vertices of such

graphs have a bound � on their maximum degree. We discuss our method of attaining O(1)

PRAM (see 1.7) [41] complexity bounds for computing an MIS on such graphs, namely �nite

56

element models in three dimensional solid mechanics. Our algorithm is notable in that it

does not rely on global random vertex ordering (see [50, 60] and the references therein)

to achieve correctness in a distributed memory computing environment but explicitly uses

knowledge of the graph partitioning to provide for the correct construction of an MIS in an

e�cient manner.

The complexity model of our algorithm also has the attractive attribute that it

requires far fewer processors than vertices, in fact we restrict the number of processors

used in order to attain optimal complexity. Our PRAM model uses P = O(n) processors

(n = jV j) to compute an MIS, but we restrict P to be at most a �xed fraction of n to

attain the optimal theoretical complexity. The upper bound on the number of processors

is however far more than the number of processors that are generally used in practice on

common distributed memory computers of today; so given the common use of relatively fat

processor nodes in modern computers, our theoretical model allows for the use of many more

processors than one would typically use in practice. Thus, in addition to obtaining optimal

PRAM complexity bounds, our complexity model reects the way that modern machines

are actually used. Our numerical experiments con�rm our O(1) complexity claim.

We do not include the complexity of the graph partitionings in our complexity

model, though our method explicitly depends on these partitions. We feel justi�ed in this

as it is reasonable to assume that the MIS program is embedded in a larger application that

requires partitions that are usually much better than the partitions that we require.

5.2.1 An asynchronous distributed memory algorithm.

Consider a graph G = (V;E) with vertex set V, and edge set E, an edge being

an unordered pair of distinct vertices. Our application of interest is a graph which arises

from a �nite element analysis, where elements can be replaced by the edges required to

make a clique of all vertices in each element, see Figure 5.1. Finite element methods, and

indeed most discretization methods for PDEs, produce graphs in which vertices only share

an edge with their nearest physical neighbors, thus the degree of each vertex v 2 V can be

bounded by some modest constant�. We restrict ourselves to such graphs in our complexity

analysis. Furthermore to attain our complexity bounds we must also assume that vertices

are \partitioned well" (which is de�ned later) across the machine.

We introduce our algorithm by �rst describing the basic random greedy MIS algo-

57

GraphFE mesh

Figure 5.1: Finite element quadrilateral mesh and its corresponding graph

rithms described in [60]. We utilize an object oriented notation from common programming

languages, as well as set notation, in describing our algorithms; this is done to simplify the

notation and we hope it does not distract the uninitiated reader. We endow vertices v with

a mutable data member state, state 2 fselected; deleted; undoneg. All vertices begin in the

undone state, and end in either the selected or deleted state; the MIS is de�ned as the set

of selected vertices. Each vertex v is also given a list of adjacencies adjac.

Definition 1: The adjacency list for vertex v is de�ned by

v:adjac = fv1 j (v; v1) 2 Eg

We also assume that v:state has been initialized to the undone state for all v and

v:adjac is as de�ned in Definition 1 in all of our algorithm descriptions. With this notation

in place we show the basic MIS algorithm (BMA) in Figure 5.2.

forall v 2 V
if v:state = undone then

v:state selected

forall v1 2 v:adjac
v1:state deleted

I fv 2 V j v:state = selectedg

Figure 5.2: Basic MIS algorithm (BMA) for the serial construction of an MIS

For parallel processing we partition the vertices onto processors and de�ne the

vertex set Vp owned by processor p of P processors. Thus V = V1[V2[: : :[VP is a disjoint

union, and for notational convenience we give each vertex an immutable data member

58

proc after the partitioning is calculated to indicate which processor is responsible for it.

De�ne the edge separator set ES to be the set of edges (v; w) such that v:proc 6= w:proc.

De�ne the vertex separator set V S = fv j (v; w) 2 ESg (G is undirected, thus (v; w)

and (w; v) are equivalent). De�ne the processor vertex separator set, for processor p, by

V S
p = fv j (v; w) 2 ES and (v:proc = p or w:proc = p)g. Further de�ne a processors

boundary vertex set by V B
p = Vp \ V S , and a processors local vertex set by V L

p = Vp � V B
p .

Our algorithm provides for correctness and e�ciency in a distributed memory computing

environment by �rst assuming a given ordering or numbering of processors so that we can

use inequality operators with these processor numbers. As will be evident later, if one vertex

is placed on each processor (an activity of theoretical interest only), then our method will

degenerate to one of the well known random types of algorithms [60].

We de�ne a function mpivs(vertex set) (an acronym for \maximum processor in

vertex set"), which operates on a list of vertices:

Definition 2:

mpivs(vertex set) =

(
maxfv:proc j v 2 vertex set; v:state 6= deletedg if vertex set 6= ;
�1 if vertex set = ;

)

Given these de�nitions and operators, our algorithm works by implementing two

rules within the BMA running on processor p, as shown below.

� Rule 1: Processor p can select a vertex v only if v:proc = p.

� Rule 2: Processor p can select a vertex v only if p � mpivs(v:adjac).

Note that Rule 1 is a static rule, because v:proc is immutable, and can be enforced

simply by iterating over Vp on each processor p when looking for vertices to select. In

contrast, Rule 2 is dynamic because the result of mpivs(v:adjac) will in general change

(actually monotonically decrease) as the algorithm progresses and vertices in v:adjac are

deleted.

5.2.2 Shared memory algorithm

Our Shared Memory MIS Algorithm (SMMA) in Figure 5.3, can be written as a

simple modi�cation to BMA.

We have modi�ed the vertex set that the algorithm running on processor p uses

(to look for vertices to select), so as to implement Rule 1. We have embedded the basic

59

while fv 2 Vp j v:state = undoneg 6= ;
forall v 2 Vp - - implementation of Rule 1

5: if v:state = undone then

6: if p � mpivs(v:adjac) then - - implementation of Rule 2

7: v:state selected

forall v1 2 v:adjac
v1:state deleted

I fv 2 V j v:state = selectedg

Figure 5.3: Shared memory MIS algorithm (SMMA) for MIS, running on processor p

algorithm in an iterative loop and added a test to decide if processor p can select a vertex,

for the implementation of Rule 2. Note, the last line of Figure 5.3 may delete vertices that

have already been deleted, but this is inconsequential.

There is a great deal of exibility in the order which vertices are chosen in each

iteration of the algorithm. Herein lies a simple opportunity to apply a heuristic, as the �rst

vertex chosen is always selectable and the probability is high that vertices which are chosen

early is also selectable. Thus if an application can identify vertices that are \important" then

those vertices can be ordered �rst and so that a less important vertex can not delete a more

important vertex. For example, in the automatic construction of coarse grids for multigrid

equation solvers on unstructured meshes one would like to give priority to the boundary

vertices [1]. This is an example of a static heuristic, that is a ranking which can be calculated

initially and does not change as the algorithm progresses. Dynamic heuristics are more

di�cult to implement e�ciently in parallel. An example is the saturation degree ordering

(SDO) used in graph coloring algorithms [14]: SDO colors the vertex with a maximum

number of di�erent colored adjacencies; the degree of an uncolored vertex increases as the

algorithm progresses and its neighbors are colored. We know of no MIS application, that

does not have a quality metric to maximize - thus it is of practical importance that an

MIS algorithm can accommodate the use of heuristics e�ectively. Our method can still

implement the \forall" loops, with a serial heuristic, i.e. we can iterate over the vertices

in Vp in any order that we like. To incorporate static heuristics globally (i.e. a ranking

of vertices), one needs to augment our rules and modify SMMA, see [1] for details, but in

60

doing so we lose our complexity bounds, in fact if one assigns a random rank to all vertices

this algorithm would degenerate to the random algorithms described in [60, 50].

To demonstrate correctness of SMMA we proceed as follows: show termination;

show that the computed set I is maximal; and show that independence of I = fv 2 V j
v:state = selectedg is an invariant of the algorithm.

� Termination is simple to prove and we do so in x5.2.4.

� To show that I is maximal we can simply note that if v:state = deleted for v 2 V , v
must have a selected vertex v1 2 v:adjac as the only mechanism to delete a vertex is

to have a selected neighbor do so. All deleted vertices thus have a selected neighbor

and they can not be added to I and maintain independence, hence I is maximal.

� To show that I is always independent �rst note that I is initially independent - as

I is initially the empty set. Thus it su�ces to show that when v is added to I , in

line 7 of Figure 5.3, no v1 2 v:adjac is selected. Alternatively we can show that

v:state 6= deleted in line 7, since if v can not be deleted then no v1 2 v:adjac can be

selected. To show that v:state 6= deleted in line 7 we need to test three cases for the

processor of a vertex v1 that could delete v:

{ Case 1) v1:proc < p: v would have blocked v1:proc from selecting v1, because

mpivs(v1:adjac) � v:proc = p > v1:proc, so the test on line 6 would not have

been satis�ed for v1 on processor v1:proc.

{ Case 2) v1:proc = p: v would have been deleted, and not passed the test on

line 5, as this processor selected v1 and by de�nition there is only one thread of

control on each processor.

{ Case 3) v1:proc > p: as mpivs(v:adjac)� v1:proc > p thus p 6� mpivs(v:adjac)

the test on line 6 would not have succeeded, line 7 would not be executed on

processor p.

Further we should show that a vertex v with v:state = selected can not be deleted,

and v:state = deleted can not be selected. For a v to have been selected by p it must have

been selectable by p (i.e. fv1 2 v:adjac j v1:proc > p, v1:state 6= deletedg = ;). However
for another processor p1 to delete v, p1 must select v1 (p1 = v1:proc), this is not possible

since if neither v nor v1 are deleted then only one processor can satisfy line 6 in Figure

61

5.3. This consistency argument is developed further in x5.2.4. Thus, we have shown that

I = fv 2 V j v:state = selectedg is an independent set and, if SMMA terminates, I is

maximal as well.

5.2.3 Distributed memory algorithm

For a distributed memory version of this algorithm we use a message passing

paradigm and de�ne some high level message passing operators. De�ne send(proc;X;Action)

and receive(X;Action) - send(proc;X;Action) sends the object X and procedure Action

to processor proc, receive(X;Action) receives this message on processor proc. Figure 5.4

shows a distributed memory implementation of our MIS algorithm running on processor p.

We have assumed that the graph has been partitioned to processors 1 to P , thus de�ning

Vp, V
S
p , V

L
p , V

B
p , and v:proc for all v 2 V .

while fv 2 Vp j v:state = undoneg 6= ;
forall v 2 V B

p - - implementation of Rule 1

if v:state = undone then

if p � mpivs(v:adjac) then - - implementation of Rule 2

Select(v)

proc set fproc j v 2 V S
procg � p

forall proc 2 proc set send(proc; v; Select)

while receive(v; Action)

if v:state = undone then Action(v)

forall v 2 V L
p - - implementation of Rule 1

if v:state = undone then

if p � mpivs(v:adjac) then - - implementation of Rule 2

Select(v)

if v1 2 V B then

proc set fproc j v1 2 V S
procg � p

forall proc 2 proc set send(proc; v1; Delete)

I fv 2 V j v:state = selectedg

Figure 5.4: Asynchronous distributed memory MIS algorithm (ADMMA) on processor p

62

procedure Select(v)

v:state selected

forall v1 2 v:adjac
Delete(v1)

procedure Delete(v1)

v1:state deleted

Figure 5.5: ADMMA \Action" procedures running on processor p

A subtle distinction must now be made in our description of the distributed mem-

ory version of the algorithm in Figure 5.4 and 5.5: vertices (e.g. v and v1) operate on local

copies of the objects and not to a single shared object. So, for example, an assignment to

v:state refers to assignment to the local copy v on processor p. Each processor has a copy of

the set of vertices V E
p = Vp[V S

p , i.e. the local vertices Vp and one layer of \ghost" vertices.

Thus all expressions refer to the objects (vertices) in processor p's local memory.

Note that the value of mpivs(v:adjac) monotonically decreases as v1:state (v1 2
v:adjac) are deleted, thus as all tests to select a vertex, are of the form p � mpivs(v:adjac)

some processors have to wait for other processors to do their work (i.e. select and delete

vertices). In our distributed memory algorithm in Figure 5.4 the communication time

is added to the time that a processor may have to wait for work to be done by another

processor; this does not e�ect the correctness of the algorithm but it may e�ect the resulting

MIS. Thus ADMMA is not a deterministicMIS algorithm; although the synchronous version

- that we use for our numerical results - is deterministic for any given partitioning.

The correctness for ADMMA can be shown in a number of ways, but �rst we de�ne

a weaving monotonic path (WMP) as a path of length t in which each consecutive pair of

vertices ((vi,vj) 2 E) satis�es vi:proc < vj :proc, see Figure 5.6.

63

P1 P4

P3
P6

Processor rank

P2 WMP

P8

P7

P5

Figure 5.6: Weaving monotonic path (WMP) in a 2D FE mesh

One can show that the semantics of ADMMA run on a partitioning of a graph

is equivalent to a random algorithm with a particular set of \random" numbers. Alterna-

tively, we can use the correctness argument from the shared memory algorithm and show

consistency in a distributed memory environment. To do this �rst make a small isomorphic

transformation to ADMMA in Figure 5.4:

� Remove v:state selected in Figure 5.5, and replace it with a memoization of v so

as to avoid \selecting" v again.

� Remove the \Select" message from Figure 5.4 and modify the Select procedure in

Figure 5.5 to send the appropriate \Delete" messages to processors that \touch"

v1 2 v:adjac.

� Rede�ne I to be I = fv 2 V j v:state 6= deletedg at the end of the algorithm.

� Change the termination test to: while (9v1 2 v:adjac j v 2 Vp; v:state 6= deleted; v1:state 6=
deleted), or simply while (I is not independent).

This does not change the semantics of the algorithm but removes the selected

state from the algorithm and makes it mathematically simpler (although less concrete of a

description). Now only Delete messages need to be communicated and v:state deleted is

the only change of state in the algorithm. De�ne the directed graph GWMP = (V S ; EWMP),

EWMP = f(v; w) 2 E j v:proc < w:procg; in general GWMP is a forest of acyclic graphs.

Further de�ne GWMP
p = (V S

p ; E
WMP
p), EWMP

p = f(v; w) 2 E j w:state 6= deleted; v:proc =

pg. GWMP
p is the current local view ofGWMP with the edges removed for which the \source"

64

vertices have been deleted. Rule 2 can now be restated: processor p can only select a

vertex that is not the end of an edge in EWMP
p . Processors deletes \down stream" edges

in EWMP and send messages so as other processors can delete their \up stream" copies

of these edges, thus GWMP
p is pruned as p deletes vertices and receives delete messages.

Informally, consistency for ADMMA can be inferred as the only information ow (explicit

delete messages between processors) moves down acyclic graphs in GWMP ; as the test,

(8v1 2 v:adjac j v1:proc � p or v1:state = deleted) for processor p to select a vertex v,

requires that all edges (in EWMP) to v are \deleted". Thus the order of the reception of

these delete messages is inconsequential and there is no opportunity for race conditions or

ambiguity in the results of the MIS. More formally we can show that these semantics insure

that I = fv 2 V j v:state 6= deletedg is maximal and independent:

� I is independent as no two vertices (in I) can remain dependent forever. To show

this we note that the only way for a processor p to not be able to select a vertex v

is for v to have a neighbor v1 on a higher processor. If v1 is deleted then p is free to

\select" v. Vertex v1 on processor p1 can in tern be selected unless it has a neighbor

v2 on a higher processor. Eventually the end of this WMP is reached and processor

pt processes vt and thus releases pt�1 to select vt�1 and on down the line. Therefore

no pair of undone vertices remains, and I is eventually be independent.

� I is maximal as the only way for a vertex to be deleted is to have a selected neighbor.

To show that no vertex v that is \selected" can ever be deleted, as in our shared

memory algorithm, we need to show that three types of processors p1 with vertex v1

can not delete v.

{ For p = p1: we have the correctness of the serial semantics of BMA to ensure

correctness, i.e. v1 would be deleted and p would not attempt to select it.

{ For p > p1: p1 will not pass the mpivs(v1:adjac) test as in the shared memory

case.

{ For p < p1: p does not pass the mpivs(v1:adjac) and will not \select" v in the

�rst place.

Thus I is maximal and independent.

65

5.2.4 Complexity of the asynchronous maximal independent set algo-

rithm

In this section we derive the complexity bound of our algorithm under the PRAM

computational model. To understand the costs of our algorithm we need to bound the cost

of each outer iteration, as well as, bound the total number of outer iterations. To do this

we �rst make some restrictions on the graphs that we work with and the partitions that

we use. We assume that our graphs come from physical models, that is vertices are only

connected by an edge to its nearest neighbors so the maximum degree � of any vertex is

bounded. We also assume that our partitions satisfy a certain criterion (for regular meshes

we can illustrate this criterion with regular rectangular partitions and a minimum logical

dimension that depends only on the mesh type). We can bound the cost of each outer

iteration by requiring that the sizes of the partitions are independent of the total number

of vertices n. Further we assume that the asynchronous version of the algorithm is made

synchronous by including a barrier at the end of the \receive" while loop, in Figure 5.4,

at which point all messages are received and then processed in the next forall loop. This

synchronization is required to avoid more than one leg of a WMP from being processed in

each outer iteration. We need to show that the work done in each iteration on processor p

is of order Np (Np = jVpj). This is achieved if we use O(n) processors and can bound the

load balance (i.e. maxfNpg=minfNpg) of the partitioning.

LEMMA 3.1. With the synchronous version of ADMMA, the running time of the

PRAM version of one outer iteration in Figure 5.4 is O(1) = O(n=P), if maxfNpg=minfNpg =
O(1)

Proof. We need to bound the number of processors that touch a vertex v i.e.

jvjproc �
���proc j v 2 V S

proc

��� In all cases jvjproc is clearly bounded by �. Thus, max jvjproc �Np

is O(1) and is an upper bound (and a very pessimistic bound) on the number of messages sent

in one iteration of our algorithm. Under the PRAM computational model we can assume

that messages are sent between processors in constant time and thus our communication

costs in each iteration is O(1). The computation done in each iteration is again proportional

to Np and bounded by � �Np, the number of vertices times the maximum degree. This

is also a very pessimistic bound that can be gleaned by simply following all the execution

paths in the algorithm and successively multiplying by the bounds on all of the loops (�

66

and Np). The running time for each outer iteration is therefore O(1) = O(n ��=P).
�

Notice for regular partitions jvjproc is bounded by 4 in 2D, and 8 in 3D, and that

for optimal partitions of large meshes jvjproc is about 3 and 4 for 2D and 3D respectively.

The number of outer iterations, in Figure 5.4, is a bit trickier to bound. To do this we look

at the mechanism by which a vertex fails to be selected.

LEMMA 3.2. The running time in the PRAM computational model, of ADMMA,

is bounded by the maximum length weaving monotonic path in G.

Proof. To show that the number of outer iterations is proportional to the maximum

length WMP in G, we need to look at the mechanism by which a vertex can fail to be selected

in an iteration of our algorithm and thus potentially require an additional iteration. For a

processor p1 to fail to select a vertex v1, v1 must have an undone neighbor v2 on a higher

processor p2. For vertex v2 to not be selectable, v2 in turn must have an undone neighbor

v3 on a higher processor p3 and so on until vt is the top vertex in the WMP. The vertex vt

at the end of a WMP is be processed in the �rst iteration as there is nothing to stop vt:proc

from selecting or deleting vt. Thus, in the next iteration, the top vertex vt of the WMP

has been either selected or deleted; if vt was selected then vt�1 has been deleted and the

Undone WMP (UWMP), a path in GWMP , is at most of length t � 2 after one iteration;

and if vt was deleted (the worst case) then the UWMP could be of at most length t � 1.

After t outer iterations the maximum length UWMP is of length zero, thus all vertices are

selected or deleted. Therefore, the number of outer iterations is bounded by the longest

WMP in the graph.

�

COROLLARY 3.1. ADMMA will terminate.

Proof. Clearly the maximum length of a WMP is bounded by the number of

processors P . By LEMMA 3.2 ADMMA will terminate in a maximum of P outer iterations.

�
To attain our desired complexity bounds, we want to show that a WMP can not

grow longer than a constant. To understand the behavior of this algorithm we begin with

a few observation about regular meshes. Begin by looking at a regular partitioning of a

2D �nite element quadrilateral mesh. Figure 5.6 shows a 2D mesh and a partitioning with

67

regular blocks of four (2 � 2) and a particular processor order. This is just small enough

to allow for a WMP to traverse the mesh inde�nitely, but clearly a nine (3 � 3) vertex
partitions would break this WMP and only allow it walk around partition intersections.

Note that the (2 � 2) case would require just the right sequence of events to happen on all

processors for this WMP to actually govern the run time of the algorithm. On a regular 3D

�nite element mesh of hexahedra the WMP can coil around a line between four processors

and the required partition size, using the same arguments as in the 2D case, would be �ve

vertices on each side (or one more than the number of processors that share a processor

interface line).

For irregular meshes one has to look at the mesh partitioning mechanism employed.

Partitions on irregular meshes in scienti�c and engineering applications generally attempt

to reduce the number of edges cut (i.e.
���ES

���) and balance the number of vertices on each

partition (i.e. jVpj � p=n � 1). We assume that such a partitioner is in use and make a few

general observations. First the partitions of such a mesh will tend to produce partitions

in the shape of a hexagon in 2D for a large mesh with relatively large partitions. This

is because the partitioner is trying to reduce the surface to volume ratio of each partition.

These partitions are not likely to have skinny regions where a WMP could jump through the

partition, and thus the WMP is relegated to following the lines of partition intersections.

We do not present statistical or theoretical arguments as to the minimum partition size N

that must be employed to bound the growth of a WMP for a given partitioning method;

though clearly some constant N exists that, for a give �nite element mesh type and a given

reasonable partitioning method, will bound the maximum WMP length by a constant. This

constant is roughly the number of partitions that come close to each other at some point,

an optimal partitioning of a large D dimensional mesh will produce partitioning in which

D+ 1 partitions meet at any given point. Thus, when a high quality mesh partitioner is in

use, we would expect to see the algorithm terminate in at most four iterations on adequately

well partitioned and sized three dimensional �nite element meshes.

5.2.5 Numerical results

We present numerical experiments on an IBM SP with 80, 120 Mhz, Power2

(P2SC) processors at Argonne National Laboratory. An extended version of the Finite

Element Analysis Program (FEAP)[36], is used to generate out test problems and produce

68

our graphics. We use ParMetis [53] to calculate our partitions, and PETSc [10] for our

parallel programming and development environment. Our code is implemented in C++,

FEAP is implemented in FORTRAN, PETSc and ParMetis are implemented in C. We want

to show that our complexity analysis is indicative of the actual behavior of the algorithm

with real (imperfect) mesh partitioners. Our experiments con�rm our PRAM complexity

model is indicative of the performance one can expect with practical partitions on graphs

of �nite element problems. Due to a lack of processors we are not able to investigate the

asymptotics of our algorithm throughly.

Our experiments are used to demonstrate that we do indeed see the behavior that

our theory predicts. Additionally we use numerical experiments to quantify lower bound

on the number of vertices per processor that our algorithm requires before growth in the

number of outer iterations is observed. We use a parameterized mesh from solid mechanics

for our test problem. This mesh is made of eight vertex hexahedral trilinear \brick" elements

and is almost regular; the maximum degree � of any vertex is 26 in the associated graph.

Figure 5.7 shows one mesh (13,882 vertices). The other meshes that we test are of the same

physical model but with di�erent scales of discretization (this problem is referred to as P1

in later chapters.

Figure 5.7: 13,882 vertex 3D FE mesh

We add synchronization to ADMMA on each processor by receiving all messages

from neighboring processors in each iteration, to more conveniently measure the maximum

length WMP that actually governs the number of outer iterations. Table 5.2.5 shows the

results of the number of iterations required to calculate the MIS. Each case was run 10

times, as we do not believe that ParMetis is deterministic, but all 10 iteration counts were

69

identical, thus it seems that this did not e�ect any of our results. A perfect partitioning of

a large D-dimensional mesh with a large number of vertices per processor results in D + 1

processors intersecting at a \point", and D partitions sharing a \line". If these meshes

are optimal we can expect that the length of these lines (of partition boundaries) are of

approximately uniform length. The length of these lines required to halt the growth of

WMPs is D+ 1 vertices on an edge, as discussed in x5.2.4. If the approximate average size
of each partition is that of a cube with this required edge length, then we would need about

64 vertices per partition to keep the length of a WMP from growing past 4. This assumes

that we have a perfect mesh, which we do not, but none the less this analysis gives an

approximate lower bound on the number of vertices that we need per processor to maintain

our constant maximum WMP length.

Processors

Vertices 8 16 24 32 40 48 56 64 72 80

427 3 3 3 3 4 4 4 4 6 6

1,270 2 4 3 3 4 4 4 3 4 3

2,821 3 3 4 3 3 3 4 3 4 4

5,296 2 2 3 3 3 3 4 3 3 3

8,911 3 3 4 3 4 3 4 3 3 3

13,882 3 3 3 3 3 3 3 3 3 3

Table 5.1: Average number of iterations

Figure 5.8 shows a graphic representation of this data for all partitions. The growth

in iteration count for constant graph size is reminiscent of the polylogarithmic complexity

of at or vertex based random MIS algorithms [50]. Although ParMetis does not specify

the ordering of processors, it is not likely to be very random. These results show that

the largest number of vertices per processor that \broke" the estimate of our algorithms

complexity bound is about 7 (6.5 average) and the smallest number of vertices per processor

that stayed at our bound of 4 iterations was also about 7 (7.3 average). To demonstrate

our claim of O(1) PRAM complexity we only require that there exists a bound N on the

number of vertices per processor that is required to keep a WMP form growing beyond

the region around a point where processors intersect. These experiments do not show any

indication that that such a N does not exist. Additionally these experiments show that

our bounds are quite pessimistic for the number of processors that we were able to use.

70

This data suggests that we are far away from the asymptotics of this algorithm, that is, we

need many more processors to have enough of the longest WMPs so that one consistently

governs the number of outer iterations.

2000

4000

6000

8000

10000

12000

10

20

30

40

50

60

70

80

0

5

10

Processors

Average Number of Iterations

Vertices

Figure 5.8: Average iterations vs. number of processors and number of vertices

71

5.3 Maximal independent set heuristics

This section discusses heuristics useful in optimizing the quality of multigrid re-

striction operators. These methods use coordinate data available in all �nite element simu-

lations, and we also employ some element data: element type (e.g. tetrahedra, quadrilateral

shell, etc.) and element connectivity. We use this data to categorize topological elements

of the �nite element mesh, and use this information to modify the graph used in the MIS

algorithm to improve solver performance. We also show how these heuristics can be applied

globally on parallel platforms, as well as a simple method to get the coarse grids to more

e�ectively \cover" the �ne grids.

5.3.1 Automatic coarse grid creation with unstructured meshes

This section introduces the components that we use for the automatic construction

of coarse grids on unstructured meshes, but �rst we state what we want our coarse grids to

be able to do. The goal of the coarse grids in multigrid is to approximate the low frequency

error in the current grid. Each successive grid's �nite element function space should (with

a drastically reduced vertex set) approximate, as best as it can, the highest frequency (or

eigenfunctions) of the current grid. That is with say 10% of the vertices it is natural to

expect that one could only represent the lowest 10% of the �ne grid spectra well.

The coarse grid functions should approximate the highest part of this lower part

of the spectrum as well as possible. It is not possible to satisfy this criterion directly (on

unstructured grids), but a natural heuristic is to represent the geometry as well as possible

with a much smaller set of vertices. One promising approach is to use computational

geometry techniques to characterize features and maintain them on the coarser grids [81].

One popular method is to use a maximal independent set as a heuristic to evenly coarsen

the vertex set, as discussed in the last section. If vertices are added to the MIS randomly

then the MIS is expected to be a good representation of the �ne grid in the sense of evenly

coarsening the grid points and maintain the feature characteristics of the mesh. An MIS is

not unique in general, and an arbitrary MIS is not likely to perform well as we show below,

thus we use heuristics to improve performance.

We motivate our approach by �rst looking at the structured multigrid algorithm.

We can characterize the behavior of multigrid on structured meshes, as shown in Figure

5.9, as: select every other vertex (starting from the boundary), in each dimension, for use

72

in the coarse grid.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

11

1

1

11

1

1

11

1

1

2

2

Points labeled are
part of next coarser grid

Points labeled 1 are
part of next coarser grid

 7 by 7 grid of unknowns 3 by 3 grid of unknowns 1 by 1 grid of unknowns
P : 9 by 9 grid of points P : 5 by 5 grid of points P : 3 by 3 grid of points

(2) (1)(3)

2

2

2

2

2

Figure 5.9: Multigrid coarse vertex set selection on structured meshes

To apply multigrid to unstructured meshes it is natural to try to imitate the

behavior of the structured algorithm in hopes of imitating its success. Consider that, in

addition to evenly coarsening the vertex set, the coarse grids in Figure 5.9 also emphasize

the boundaries. One description of multigrid meshes on regular grids is: place each vertex

v in a topological category of dimension d, for instance, corners (d = 0), edges (d = 1),

surfaces (d = 2), and interiors (d = 3). Note, we overload edges here to mean a topological

feature and not a graph edge - the type of \edge" should be obvious from the context in the

following discussion. Given these categories we have collections of features for each category

(e.g. a set of 3D connected surface vertices bounded by edge vertices would be one face in

the set of faces in the problem). Notice that the regular mesh in Figure 5.9 produces an

MIS within each feature. This section discusses algorithms to implement these observations

and provide numerical experiments on model problems in linear elasticity. Note, Guillard

and Chan and Smith also use simple 2D heuristics to preserve boundaries and emphasis

corners [44, 23].

Maximal independent set algorithms

Recall the basic greedy MIS algorithm in Figure 5.10, which we discussed in x5.2.

There is a great deal of exibility in the order that vertices are chosen in each

iteration of the algorithm. Herein lies a simple opportunity to apply a heuristic, as the �rst

73

forall v 2 V
if v:state = undone then

v:state selected

forall v1 2 v:adjac
v1:state deleted

I fv 2 V j v:state = selectedg

Figure 5.10: Basic MIS algorithm for the serial construction of an MIS

vertex chosen is always selectable and the probability is high that vertices which are chosen

early are also selectable. Thus if an application can identify vertices that are \important"

then those vertices can be ordered �rst and so that a less important vertex can not delete a

more important vertex. We can now decide that corners are more important than edges and

edges are more important than surfaces and so on, and order the vertices with all corners

�rst, then edges, etc. With this heuristic in place and the basic MIS algorithm in Figure

5.10 we can guarantees that the number of edge vertices on the coarse grid (in each edge

segment) satis�es
���V coarse

edge

��� �
��V fine

edge

���2
3

for 2D meshes; whereas a valid MIS could remove all

edge and corner vertices from the graph, which would be disastrous, as is shown in x5.3.7.

Parallel maximal independent set algorithms

The order in which each processor traverses the local vertex list can be governed

by our heuristics although the global application of a heuristic requires an alteration in the

MIS algorithm in x5.2. Our partition based MIS algorithm requires that vertices v are give

an immutable data member v:topo; in the MIS algorithm, processor p can select a vertex v

only if f8v1 2 v:adjac j v1:state 6= deletedg:

v1:topo < v:topo or (v1:topo = v:topo and v1:proc < v:proc)

This replaces the test expression in line 6 of Figure 5.3.

5.3.2 Topological classi�cation of vertices in �nite element meshes

Our methods are motivated by the intuition that the coarse grids of multigrid

methods must represent the boundary of the domain well in order to approximate the

function space of the �ne mesh well, which is necessary for multigrid methods to be e�ective

74

[44, 23]. Intuitively this can be done by emphasizing the vertices that \de�ne" the domain.

Note, we de�ne a domain in a slightly non-standard way as to mean a contiguous region of

the real �nite element domain with a particular material property, thus for our discussion

the boundary of the PDE proper are augmented with boundaries between di�erent material

types. If the domain is convex then a convex hull is useful in reasoning about how to best

classify the vertices. Vertices that are on the convex hull should be given more emphasis

the those that are not (i.e. interior vertices). Vertices that are required to de�ne the convex

hull are likewise more important than vertices that simply lien the convex hull. Domains

of interest are by no means necessarily convex, but the idea of emphasizing vertices by

their contribution to de�ning the boundary of a domain is useful in the exposition of our

methods.

The �rst type of classi�cation of vertices is to �nd the exterior vertices - if con-

tinuum elements are used then this classi�cation is trivial. For non-continuum elements

like plates, shells and beams, heuristics such as minimum degree could be used to �nd an

approximation to the \exterior" vertices, or a combination of mesh partitioners and con-

vex hull algorithms could be used. For the rest of this section we assume that continuum

elements are used and so a boundary of the domains, represented by a list of facets or 2D

polygons, can be de�ned. The exterior vertices give us our �rst vertex classi�cation from

the last section: interior vertices are vertices that are not exterior vertices. Exterior vertices

require further classi�cation, but �rst we need a method to automatically identify faces in

our �nite element problems.

5.3.3 A simple face identi�cation algorithm

To describe our algorithm we assume that a list of facets facet list has been

created of the boundaries of the �nite element mesh. Assume that each facet f 2 facet list
has calculate its unit normal vector f:norm. Assume that each facet f has a list of facets

f:adjac that are adjacent to it. With these data structures, and a list with with AddTail

and RemoveHead functions with the obvious meaning, we can calculate a face ID for each

facet with the algorithm shown in Figure 5.11.

This algorithm simply repeats a breadth �rst search, of trees rooted at an arbitrary

undone facet, which is pruned by the requirement that a minimum angle (arccos TOL) be

maintained by all facets in the tree relative to the root. This heuristic is a simple way to

75

forall (f 2 facet list) f:face ID 0

Current ID 0

forall f 2 facet list
if f:face ID = 0

list ffg
norm f:norm

Current ID Current ID + 1

while list 6= ;
f list:RemoveHead

f:face ID Current ID

forall f1 2 f:adjac TOL, �1 < TOL � 1, is a user selected tolerance

if normT � f1:norm > TOL and f1:face ID = 0

list:AddTail(f1)

Figure 5.11: Face identi�cation algorithm

identify faces (or manifolds that are somewhat \at") of the boundaries in the mesh.

These faces are useful for two reasons:

� Topological categories for vertices, used in the heuristics of x5.3.3, can be inferred

from these faces:

{ A vertex attached to only one face is in the interior of a surface.

{ A vertex attached to two di�erent faces is in the interior of an edge.

{ A vertex attached to more than two di�erent faces is a corner.

� Vertices not associated with the same faces should not interact with each other in the

MIS algorithm.

This second criterion is discussed in the next section.

5.3.4 Modi�ed maximal independent set algorithm

We now have all of the pieces that we need to describe the core of our method.

First we classify vertices and ensure that a vertex of lower rank does not suppress a vertex

of higher rank - this was done with a slight modi�cations to standard MIS algorithms in

76

x5.3.1. Second we want to maintain the integrity of the \faces" in the original problem as

best we can. The motivation for this second criterion can be seen in Figure 5.12.

Fine Grid

Coarse Grid

Deleted Vertex

Selected Vertex

Figure 5.12: Poor MIS for multigrid of a \shell"

If the �nite element mesh has a thin region then the MIS as described in x5.3.1 can
easily fail to maintain a cover of the vertices in the �ne mesh. This comes from the ability

of the vertices on one face to decimate the vertices on an opposing face as shown in Figure

5.12. This phenomenon could be mitigated by randomizing the order that the vertices are

added to the MIS, at least within a vertex type. But randomization is not good enough as

these skinny regions tend to lower the convergence rate of iterative solvers, so we need to

do something better.

A simple �x for this problem is to modify the graph to which we apply the MIS

algorithm - we want to maintain the same vertices in the graph, but will reduce the edge set.

To avoid the problems illustrated in Figure 5.12, we can look at our method of classifying

vertices again:

� A vertex attached to only one face is in the interior of a surface.

� A vertex attached to two di�erent faces is in the interior of an edge.

� A vertex attached to more than two di�erent faces is a corner.

Now we claim that by removing all edges between vertices that are not attached to

a common face, we force the MIS to be a more \logical" and economical (in terms of solver

performance) representative of the �ne mesh, as shown in Figure 5.13. For instance we

do not want corners to delete a edge vertex with which it does not share an exterior facet.

Another example is that we do not want edge vertices to delete edges with which it does not

77

share a face (this is the most e�ective heuristic in this example). And �nally we augment

our heuristic and not allow corners to be deleted at all - this could be problematic on some

meshes that have many initial \corners", as de�ned by our algorithm, and a reclassi�cation

of the remeshed vertices on coarse meshes is advisable.

Figure 5.13: Original and fully modi�ed graph

We are now free to run our MIS algorithm on this modi�ed graph, Figure 5.14

shows and example of a possible MIS and remeshing.

Fine Grid

Coarse Grid

Figure 5.14: MIS and coarse mesh

5.3.5 Vertex ordering in MIS algorithm on modi�ed �nite element graphs

An additional degree of freedom, in this algorithm as described thus far, is the

order of the vertices within each category. Thus far we have implicitly ordered the vertices

by topological category; the ordering within each category can also be speci�ed. Two simple

heuristics can be used to order the vertices: random order, or a \natural" order. Meshes may

78

be initially ordered in either a block regular order (i.e. an assemblage of logically regular

blocks), but this depends on the mesh generation method used. Initial vertex orders can

also be ordered in a cache optimizing order [82] like Cuthill-McKee. Both of these ordering

types are what we call natural orders, and we assume that the \initial" order of our mesh

is of this type (if not then we can make it so). The MISs produced from natural orderings

tend to be rather dense, random ordering on the other hand tend to be more sparse. That

is the MISs with natural orderings tend to be larger than those produced with random

orders. Note that for a uniform 3D hexahedral mesh, the asymptotics of the size of the

MIS is bounded from above by 1=23, and from below by 1=33 as the largest MIS will pick

every second vertex and the smallest MIS will select every third vertex; natural and random

orderings are simple heuristics to approach these bounds.

Small MISs are preferable as this means that there is less work to be done on

the coarser mesh, also fewer levels are required before the coarsest grid is small enough to

solve directly, but care has to taken to not degrade the convergence rate of the solver by

compromising the quality if the coarse grid representation. In particular, as the boundaries

are important to the coarse grid representation it may be advisable to use natural ordering

for the exterior vertices and a random ordering for the interior vertices - we use this approach

in many of our numerical experiments.

Meshing of the vertex set on the coarse grid

The vertex set for the coarse grid remains to be meshed - this is necessary in

order to apply �nite element shape functions to calculate the restriction operator. We use

a standard Delaunay meshing algorithm to give us these meshes. This is done by putting

the mesh inside of a bounding box, thus adding dummy vertices to the coarse grid set, and

then meshing this to produce a mesh that covers all �ne grid vertices. The tetrahedron

attached to the bounding box vertices are removed and the �ne grid vertices within these

deleted tetrahedron are added to a list of \lost" vertices (lost list).

With this body we continue to remove tetrahedra from the mesh that connect

vertices that were not \near" each other on the �ne mesh (recall the vertex set are still

nested), and that do not have any vertices that lie \uniquely" within the tetrahedron.

De�ne a vertex v to lie uniquely in a tetrahedron if v lies completely within the tetrahedra

and not on its surface, or there is no adjacent tetrahedra to which v can be added. More

79

precisely if a vertex's shape function values are all larger than some small tolerance � (we

use only linear shape functions), or there is not an adjacent tetrahedra that can \accept"

the vertex, then that tetrahedra is deemed necessary and not removed. We also use a

more aggressive phase in which we use a more negative, though still small, tolerance, to try

to remove more tetrahedra - but the \orphaned" vertices are added to the lost list. The

resolution of the vertices in the lost list is discussed in x5.3.6.

5.3.6 Coarse grid cover of �ne grid

The �nal optimization that we would like to employ is to improve the cover of the

coarse mesh on the �ne vertex set. With these coarse grids constructed the interpolation

operators are calculated by evaluating standard �nite element element shape functions of

the element to which the �ne grid vertex is associated. Each �ne grid vertex is associated

with an element on the coarse grid - the element that covers the �ne grid vertex. In general

however some �ne grid vertices (the lost list from the previous section) will fail to be covered

by the coarse grid as shown in Figure 5.14. This problem can be solved in one of two ways:

�nd a nearby element and use it (thus extrapolate), or move the vertices on the coarse grid

so as to cover all �ne grid vertices. We can use the extrapolation of an element that does

not cover a �ne mesh point, the extrapolation values will simply not all be between zero and

one. Intuition tells us however that interpolation is better than extrapolation. Alternatively

one can move the coarse grid vertex positions to cover the �ne vertices in lost list.

The optimal coarse grid vertex positions (or an approximation to them) could

perhaps be constructed with the use of interpolation theory to provide cost functions, and

linear or nonlinear programming. We have instead opted for a simple, greedy algorithm that

iteratively traverses the exterior vertices of the coarse mesh and applies a simple algorithm

to try to cover the uncovered vertices that are near it. First we de�ne a list ext neighc,

for each coarse grid vertex c, that contains all of the vertices attached to all of the exterior

facets to which c is attached. We de�ne a list lost listc for each coarse grid vertex c, and put

the vertices v in lost list into the list of the coarse grid vertex to which v is closest; lost listc

is then expanded to include the vertices in lost listi for each vertex i 2 ext neighc. Given
a maximum number of outer iterations M , a maximum distance tolmax that a vertex can

be move, and a larger tolerance toldelete to prune the list of potential coarse grid vertices

that can help to cover a �ne grid vertex, the algorithm is as follows

80

� do M times: forall c on the exterior of the coarse grid

{ Calculate a vector �: the weighted average of the outward normals of the facets

connected to the coarse grid vertex (c:facet list), weighted by the facet area.

{ The normal of each facet that does not have a positive inner product (with this

� vector) is added to � until ff 2 c:facet list j f:normT � � < 0g = ;, then � is

normalized to unit length.

{ ! 1

{ forall v 2 lost listc: forall f = (a; b; c)2 c:facet list

� Solve for � in�����������

a:x a:y a:z 1

b:x b:y b:z 1

c:x+ � � �:x c:y + � � �:y c:z + � � �:z 1

v:x v:y v:z 1

�����������
= 0:0

� if � > toldelete remove v from lost listc

� else if � > tolmax: ! tolmax

� else if � > 0 and � < !: ! �

{ if ! <1

� c:cood c:cood+ ! � �

� Recalculate the shape functions for all of �ne grid vertices that are within

an element connected to c, c:elems.

� For all e 2 c:elems, For all v 2 lost listc: calculate the shape function for v

in element e

� If all shape values are greater than �� for some small number �, then

� Add v to e and remove v from lost listi for all i 2 ext neighc

81

Figure 5.15 shows an illustration of what our algorithm might do on our running

example.

Fine Grid

Coarse Grid

Figure 5.15: Modi�ed coarse grid

Figure 5.16 shows an example of our methods applied to a problem in 3D linear

elasticity. The �ne (input) mesh is shown with three coarse grids used in the solution.

Figure 5.16: Fine (input) grid and coarse grids for problem in 3D elasticity

82

5.3.7 Numerical results

To demonstrate the e�ectiveness of the methods that we have discussed we use

three test problems in linear elasticity, shown in Figure 5.17. The problems are chosen

to exercise the primary problem features that we have tried to accommodate: material

coe�cient discontinuities, thin \shell" types of features, and curved surfaces. The �rst

problem is of a hard sphere (Youngs modulus E = 1, Poisson ratio � = 0:30) encased in a

soft rubber-like material (E = 10�4, � = 0:49). The second problems is a steel beam-column

connection made of thin, poorly proportioned, elements. The third problem is of a tube

�xed at one end and loaded at the other end like a cantilever - a thin slit of the rubber-like

material of the �rst problem runs down the length of one side of the tube. The \sphere"

problem has 39,732 equations, the \beam" has 34,460 equations, and the \tube" has 57,600

equations. All problems use eight vertex trilinear \brick" elements; the hard material is a

standard displacement element [86] and the soft material is a mixed formulation [76].

Figure 5.17: Test problems from linear elasticity: Sphere (39,732 dof), beam-column (34,460

dof), tube (57,600 dof)

Each problem is solved with a conjugate gradient (CG) solver, to a relative tol-

erance of 10�6. Full multigrid is used for the preconditioner, the smoother is CG precon-

ditioned by block Jacobi, the number of blocks was reduced by a factor of eight for each

successive level. All problems used three coarse grids, so that the top grid (solved directly)

was a few hundred equations in size. We present numerical experiments on an IBM SP

(120 MHz Power2 - P2SC). The Finite Element Analysis Program (FEAP)[36], is used to

generate out test problems and produce our graphics. We use ParMetis [53] to calculate

our partitions, and PETSC [10] for our parallel programming development environment.

Our code is implemented in C++, FEAP is implemented in FORTRAN, and PETSc and

83

ParMetis are implemented in C.

To demonstrate the e�ectiveness of our methods, we run these test problems with:

Pure MIS (no optimizations); Pure MIS with the heuristics of exterior vertices ordered

�rst, and interior ordered last and randomly; our modi�ed MIS without the vertex cover

heuristics; and �nally all of our optimizations. The solution times and the iteration counts

are shown in Figure 5.2.

To demonstrate the e�ectiveness of our methods, we run these test problems with:

� Pure randomized greedy MIS (no optimizations) [2].

� Pure MIS with the heuristic of exterior vertices ordered �rst, and interior ordered last

and randomly x5.3.5.

� Our modi�ed MIS x5.3.4, without the vertex cover heuristics x5.3.6

� All of our optimizations x5.3.5, x5.3.4, and x5.3.6.

The solution times and the iteration counts are shown in Table 5.2.

Problem Names Sphere Beam-column Tube

Number of equations 39,732 34,460 57,600

Condition K(A) of matrix 7:2 � 106 1:0 � 108 1:8 � 105
Number of pre (and post) smoother applications 2 3 3

Number of blocks in Jacobi smoother (�ne grid) 240 32 256

Pure MIS (no optimizations) 116(58) 201(50) 296(69)

Pure MIS w/ exterior ordered 1st, interior last and random 75.1(36) 225(54) 286(70)

Modi�ed MIS w/o vertex cover heuristics 56.5(27) 91.0(25) 104(14)

Modi�ed MIS w vertex cover heuristics (all optimizations) 56.5(27) 91.0(25) 52.8(9)

Matrix vector product time on the �ne grid (sec) 0.0727 0.057 0.0907

Table 5.2: Solve time in seconds (number of iterations)

These experiments show that our methods provide signi�cant improvement over

a random MIS, especially on complex domains. Moving coarse vertices to cover �ne ones,

did not help on meshes that do not have curved surfaces, as is expected, and provide some

improvement to meshes with curved surfaces. The vertex orderings, within each category

when applicable, a�ects these results a small amount, particularly on the \Pure MIS" data;

we see about a 10-15% variance with di�erent randomization schemes. Thus one should

consider that the standard deviation rather high for this data - but we have consistently

84

observed the dramatic bene�t of the modi�ed MIS, that is reected in this data. Thus we

feel that our modi�ed MIS heuristics are e�ective - especially on domains with complex

geometry.

5.4 Mesh generation

Mesh generators have been developed using three basic methods: Advancing front

[21, 9, 59, 45], Delaunay [11], and Octree [20]. We use a simple Delaunay method with

Watson's insertion algorithm [38]. This method proceeds by trivially meshing a \dummy"

envelope of vertices then inserting each vertex into the existing mesh. The algorithm in-

variant is that the mesh remain a valid Delaunay mesh after each vertex insertion. The

method is not highly optimal nor parallelizable but it is simple to implement, moreover we

do not need a parallel Delaunay, the the design of which is an open problem [12].

Additionally Delaunay is only well de�ned on vertex sets with no nontrivial copla-

nar or cospherical point sets - most algorithms work on these non-general position point

sets although exact arithmetic is required for robustness. Delaunay methods in 3D require

the evaluation of a 5 by 5 determinant - exactly - although only the sign (negative, zero, or

positive) is required.

We use a very e�cient method of adaptive precision arithmetic that is specialized

for the numerical predicates used in Delaunay tessellations [73]. This method achieves its

e�ciency by �rst unrolling the loops in the determinant evaluation. After the result has

been calculated and intermediate results have been judiciously saved, a backward error

analysis is performed and if the results of this analysis suggest that the sign of the answer

can not be trusted then this processes is repeated back through the intermediate levels

until the values of the intermediate results can be trusted and exact arithmetic is used

for the rest of the calculation. Note, if a set of input points is in general positions (and

plain double precision arithmetic is robust) then the only additional cost in this method

is the one backward error analysis (this is about a 10% time penalty). If the points are

cospherical then the determinant is zero and the calculation must be done completely in

exact arithmetic, otherwise this method allows for as much of the earlier terms to be reused.

85

5.5 Finite element shape functions

After the coarse meshes are created one can simply use standard �nite element

shape functions for the restriction and interpolation operators. Linear (and bilinear or

trilinear) �nite element shape functions are a�ne mappings of a point in space with the

vertices of a polytope or element. That is, given a point in space we would like to express

its coordinate as a weighted sum of the coordinates of the element vertices. This in e�ect

requires that the element vertices be used to construct a shape function which has the very

intuitive meaning of the assumed shape of the element, given the displacements of its ver-

tices. These shape functions are in general a partition of unity so that any constant function

can be represented exactly. Note, displacements are the vertex variables for displacement

based �nite element methods, however the vertex variable may, in general, be any physical

quantity - e.g. coordinates, velocities, temperature, pressure, ux, or electro magnetic �eld.

One needs to �nd the element that contains each �ne grid vertex (j). The �nite

element shape function (for the element) is evaluated, at the location of the �ne grid vertex,

for each vertex (I) of the coarse grid element containing j to compute the RIj entry in the

restriction operator. Note that in general one needs to search the coarse grid elements to

�nd the place for each �ne grid vertex, this can be done in O(log(n)) time with an optimal

searching algorithm, but since our coarse vertices are created from the �ne ones it is possible

for each vertex to �nd its \parent" in constant time.

5.6 Galerkin construction of coarse grid operators

The Galerkin construction of the coarse grids requires that three sparse matrices

be multiplied together. In indicial notation (i.e., with the sumi symbol omitted) we have

Acoarse
IJ RIiA

fine
ij RJj

This construction takes about 5 or 6 times as many oating point operations (ops), for

hexahedral meshes, as a matrix vector product on the �ner grid, although achieving optimal

performance is di�cult as there are no sparse libraries that currently support a sparse matrix

triple product. We have implemented a distributed memory sparse matrix triple product

that operates on PETSc [10] matrices. We are only able to get about 18-41% of the oating

point performance that we get in the multigrid iterations on one processor, but this matrix

86

triple product a small though not insigni�cant part of the solve, and it scales reasonably

well. The reasons for this lack of performance is three fold:

� We have four sparse objects in the matrix triple product and only one in the matrix

vector product - this requires much more indirect addressing.

� Communication in the matrix triple product requires that a matrix be communicated

instead of a vector (in the matrix vector product) - matrices are much \heavier"

objects than vectors (i.e. they are 2D sparse arrays, whereas vectors are 1D dense

arrays)

� We implemented this, and as the performance of the matrix triple product is not the

object of this research, and it is not a bottleneck in the code, we have devoted a

limited (although not insigni�cant) amount of development e�ort to the task.

That said, we can briey discuss our algorithm and our reasons for the decisions that we

made. We �rst assume that the matrices are ordered in block rows (with compressed sparse

block row storage format), that is each processor \own" a contiguous logical block of the

matrix - this is standard practice and is the format used by PETSc.

For example a matrix A (for an almost regular block of hexahedral elements) with

14,880 dof that has 1,064,988 non-zeros, its restriction matrix R has 1,938 rows (and 14,880

columns) with 47,633 non-zeros and the coarse matrix is 1,938 by 1,938 and has 211,982

non-zeros. Thus the restriction operator has about 1
20

as many non zeros as the larger

sti�ness matrix, and about 1
4
as many non-zeros as the smaller sti�ness matrix. From

this example it is clear that the �ne grid sti�ness matrix is much larger than all of the

other matrices combined - thus we wish to begin with the �ne grid matrix in optimizing

for cache performance. This implies the �rst two loops of our iteration, in Figure 5.18,

runs sequentially through the �ne grid matrix. This decision now dictates that we access

matrix entries in R that are stores on another processor, and also that we accumulate o�-

processor data to the product matrix Acoarse. Therefore some parts of R are replicated

and communication is required to accumulate the results - but this is more attractive than

communicating and duplicating parts of the �ne grid matrix.

Figure 5.18 does not show many optimizations that are done in practice but is

intended to show the details of the computation and the structure of these matrices. Note

87

� � pRowStart and pRowEnd are the �rst and last rows on processor p

for i = pRowStart : pRowEnd

forall j 2 i:columns �� i:columns is the set of adjacencies for vertex i

for II = 1 : 4 for each vertex in :element

I = i:element:vertex[II]:index

�� shape(c) is the scalar value, at coordinate c, of the shape function

shape I = i:element:vertex[II]:shape(i:coord)

for JJ = 1 : 4

J = j:element:vertex[JJ]:index

shape J = j:element:vertex[JJ]:shape(j:coord)

�� Note that AIJ 2 <ndf�ndf

Acoarse
IJ Acoarse

IJ + shape I �Aij � shape J

Figure 5.18: Matrix triple product algorithm running on processor p

that this matrix triple product is, in general, only done once for each �ne grid matrix and

so there is no opportunity to amortize the communication costs of the �ne grid matrix in

order to save costs in the communication of the resultant coarse grid matrix.

5.7 Smoothers

Smoothers are \simple" solvers in and of themselves, x2.3.1, x2.3.2, and x2.4. Ma-

trix splitting methods such as Jacobi, Gauss-Seidel and SOR are used frequently although

they are not e�ective enough for illconditioned systems. Jacobi and its generalization block

Jacobi however is very useful as a smoother in our solver as we shall see. Another popular

preconditioner is a so-called incomplete factorization which calculates a factorization of A

that limits the amount of �ll that occurs [80]. This �ll is responsible for the non-O (n)

complexity in factoring and solving �nite element matrices.

We use Krylov subspace (x2.3.2) smoothers (x3.3) preconditioned with one level

domain decomposition methods (x2.4). We have found that the best smoother precondi-

tioner, available in PETSc are diagonal, block Jacobi, and overlapping Schwarz - with block

Jacobi being our primary method for harder problems

As we are using (or at least assuming) unstructured grids, the construction of the

88

subdomains de�ning the block of the block Jacobi smoother is by no means evident. For-

tunately a good solution exists - it is natural to think that we would want \well" shaped

subdomains in a domain decomposition smoother, so as to capture the lowest energy func-

tions as is possible with a �xed number of vertices per block - thus improving the constant

of \assumption 2" in x3.4.3. We can use our standard mesh partitioners to give us good

partitions - thus we construct our subdomains with METIS [52].

89

Chapter 6

Multigrid characteristics on linear

problems in solid mechanics

This chapter presents numerical studies that are aimed at providing insight into

some of the fundamental challenges in applying iterative methods to the solution of complex

problems in solid mechanics and some characteristics of iterative solvers in general, and

multigrid in particular. Recall that the motivation for using iterative methods is to solve

large scale problems; we address issues of scale in the following chapters, but �rst we study

the convergence behavior of our solver on some basic classes of problems in linear elasticity.

6.1 Introduction

This section addresses the issues of incompressibility (x6.5), poor aspect ratio ele-
ments (x6.6), poor \geometric" conditioning (x6.3), and large jumps in material coe�cients

(x6.3,x6.4), via a suite of numerical experiments. But �rst we shall verify that multigrid

works in x6.2 - that is, for simple problem in linear elasticity the convergence rate is in-

variant to the scale (or \�neness") of discretization. We conclude that multigrid is a very

promising solver of the challenging �nite element problems that are found in many areas of

science and engineering.

90

6.2 Multigrid works

Our model problem for this section is a long thin cantilever beam (i.e. all displace-

ments fully restrained at one end of a long skinny rectangular prism). We use a regular

mesh, with perfect cubic elements, for a 1� 1 � 32 cantilever discretized with N elements

through the thickness. A load applied at the end and and use a linear elastic displacement

based element with Poisson ratio of 0:3, shown in Figure 6.1. The load is \o� axis", that is

the load vectors (all parallel) have signi�cant components in all three directions (-1.0 in all

directions, with the axis at the support and the beam being in the positive 1 direction) - this

is signi�cant as we are using Krylov subspace methods and the convergence rate can depend

on the nature of the applied load. For example if the applied load were an eigenvector of

the sti�ness matrix then any (unpreconditioned) Krylov subspace method would converge

in one iteration.

Time = 0.00E+00Time = 0.00E+00

Figure 6.1: Cantilever with uniform mesh and end load, 4� 4� 128 element mesh, N = 4

This problem is meant to demonstrate that multigrid, applied to a model problem,

does indeed converge at a rate independent of the scale of discretization. Actually we

show some superlinear convergence; this is a common phenomenon, i.e. better meshes

lead to faster convergence with multigrid. Table 6.1 shows the number of iterations, and

the condition number of each matrix. The condition number is estimated from below

by running CG without preconditioning and calculating the extreme eigenvalues of the

projected tridiagonal matrix that CG uses to calculate its (approximate) answer (x3.4.1).
This unpreconditioned CG solve was run with a relative residual tolerance of 10�6. The

drastic increase in the number of iterations shows that these matrices are indeed getting

91

harder for CG to solve.

Our solver is CG with a full multigrid preconditioner, using a diagonally precon-

ditioned CG smoother. We use two iterations in the pre and post smoothers. We declare

convergence when norm of the initial residual has been reduced by a factor of 10�6.

N Levels Iterations dof Condition Unpreconditioned iterations

2 2 14 1,728 2:9 � 107 478

4 3 12 9,600 1:2 � 108 1052

8 4 10 62,208 4:3 � 108 2200

Table 6.1: Multiple discretizations of a cantilever

Figure 6.2 shows the convergence history of these problems.

0 2 4 6 8 10 12 14
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

iterations

re
la

tiv
e

re
si

du
al

Relative residual vs. iteration

2*2*64 Beam
4*4*128 Beam
8*8*256 Beam

Figure 6.2: Residual convergence for multiple discretizations of a cantilever

Note another phenomenon that is common of iterative solvers, the residual in-

creases (jumps) during the �rst few iterations. This jump can sometimes be down; a general

rule of thumb is that the more poorly conditioned the problem the larger this initial jump

is.

This section shows that multigrid has a hope of being an e�ective solver for �nite

92

element method matrices. We can see that on a trivial problem, multigrid's rate of conver-

gence is indeed nearly independent of the condition number of the matrix as reected in

�ner discretizations - indeed, it improves with size. The next section also uses this model

problem and shows that multigrid is invariant to changes in material coe�cients - if the

material interfaces are captured on the coarse grids.

6.3 Large jumps in material coe�cients - soft section can-

tilever beam

In this section we take the cantilever beam of the last section and add two rows of a

soft material in the middle (thus the problem is singular if the soft material has no sti�ness).

The N = 8 (62,208 dof) problem is used from the last section - the \soft" material has a

Poisson ratio of 0:3 and we parameterize its elastic modulus to range from 1:0 (that of the

rest of the mesh) down to the point that the matrix is singular to working precision (and

CG breaks down). We have encouraged a very regular structure of the coarse meshes by

using the natural vertex order in the maximal independent set algorithm - additionally we

have placed this \soft" layer judiciously so as to produce the \best" coarse grids (without

changing the mesh's geometric con�guration). Thus this is very much an arti�cial example

and it is simply meant to show that indeed \multigrid can work perfectly" for 3D elasticity,

with large jumps in material coe�cients, if the problem is perfectly partitioned Table 6.2

shows the results in terms of iteration count for these problems. Figure 6.3 shows the

log10Esoft 0 �2 �4 �6 �8
Iterations 11 11 12 13 14

Condition 4:3 � 108 5:6 � 108 1:5 � 1010 - -

Unpreconditioned iterations 2193 2717 6738 - -

Table 6.2: Cantilever with soft section

convergence history of these problems.

The important point to notice here is that the slope of the convergence is the same

for all of the problems. Also notice the \dot" plots in Figure 6.3 of the true residual (i.e.

explicit calculation of b � Axk) - the last two problems do not converge to the speci�ed

tolerance because of the illconditioning caused by these extreme coe�cients.

93

0 2 4 6 8 10 12 14
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

iterations

re
si

du
al

 (
in

 C
G

)
/ o

rig
in

al
 r

es
id

ua
l

Relative residual vs. iteration

Soft E = 1.0

Soft E = 1.0e−2

Soft E = 1.0e−4

Soft E = 1.0e−6

Soft E = 1.0e−8

real residual (|| b − A * x
k
 ||)

Figure 6.3: Residual convergence for a cantilever with soft a section

94

6.4 Large jumps in material coe�cients - curved material

interface

This section demonstrates the e�ect of not capturing the geometry perfectly in

a mixed coe�cient problem. Figure 5.7 shows a �nite element model of a hard sphere

included in a \soft" somewhat incompressible material (Poisson ratio of 0:49) [76]. The

di�culty with this problem is that the coarse grids can not capture the geometry of the �ne

grids (unless all vertices on the curved surface were retained in the coarse grid). This results

in �ne grid points on the curved surface being interpolated by points in the interior of the

soft material, thus points of very di�erent character (sti�ness in this case) are \polluting"

each other.

We use block Jacobi preconditioner for the CG smoother as this is most e�ective

for this problem x5.7. Our problem has 24,800 dof and we use 150 blocks in the block Jacobi

preconditioner for the conjugate gradient smoother in multigrid.

Table 6.3 shows the convergence (again with a residual tolerance of 10�6). Figure

log10Esoft 0 �2 �4 �6 �8 �10 �12
Iterations 17 19 24 45 55 55 55

Condition 6:4 � 104 3:5 � 104 3:5 � 106 3:5 � 108 3:1 � 1010 NA NA

Unpreconditioned iterations 926 930 8607 9000+ 9000+ NA NA

Table 6.3: Iterations for included sphere with soft cover

6.4 shows the convergence history of these problems.

Thus, unlike the previous example where we were able to capture the material

interface perfectly on the coarse grids, the convergence rate does degrade as the elastic

modulus of the soft material is reduced.

95

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

iterations

re
si

du
al

 (
in

 C
G

)
/ o

rig
in

al
 r

es
id

ua
l

Relative residual vs. iteration

Soft E = 1.0

Soft E = 1.0e−2

Soft E = 1.0e−4

Soft E = 1.0e−6

Soft E = 1.0e−8

Soft E = 1.0e−10

Soft E = 1.0e−12

Figure 6.4: Residual convergence for included sphere with soft cover

96

6.5 Incompressible materials

This section investigates the e�ect of incompressible materials on the convergence

rate of our solver. We use the 14,800 dof version of the same model as the last section. We

parameterize the Poisson ratio �soft. The ratio of the elastic modulus in the soft material,

to that of the hard material, is held at 10�4, Three di�erent smoothers are used, conjugate

gradients preconditioned with: Jacobi, block Jacobi, and overlapping Schwarz (one layer of

overlap). Table 6.4 shows the number of iterations for each case as well as the condition

number of a smaller version of this problems (see below for more details). Note, we restart

�soft 0:3 0:4 0:45 0:49 0:499

Jacobi 17 19 22 74 188

Block Jacobi 11 13 15 33 126

Overlapping additive Schwarz 12 12 16 19 35

Condition (3; 420 dof version) 1:52 � 106 1:64 � 106 1:70 � 106 1:75 � 106 1:76 � 106
Unpreconditioned iterations 5131 5686 6855 8643 9146

Table 6.4: Iterations for included sphere with common preconditioners in CG smoother

CG every 30 iterations for the data in Table 6.4. Figure 6.5 shows the solve time and

convergence history of these problems with each smoother.

We can observe many common characteristics of iterative solvers in this data.

First, the condition number of the matrix is not e�ective at predicting the convergence

behavior of these problems as the convergence rate deteriorates drastically whereas the

condition number is hardly e�ected by the higher Poisson ratio. Also we can see that the

more expensive preconditioners become economical an the harder problems only

The condition number is calculated by calculating the entire spectrum with LA-

PACK's \dsyev" [3]. Figure 6.6 shows a plot of the spectrum for �soft = 0:3 to 0:49999,

on a 3; 420 dof version of this problem. From this we can see that the Poisson ratio e�ects

only the eigenvalues in the middle of the spectrum (up to the point where the volumetric

sti�ness of the \soft" material is rivaling and surpasses that of the \sti�" material. Thus

for all but the � = 0:49999 the condition number of these problems are virtually identical.

The second observation to be made from this data is that the more powerful

preconditioners are only cost e�ective on the harder problems with the the overlapping

Schwarz preconditioner being the most powerful. Note, we are not able to achieve the same

97

0 50 100 150

10
−5

10
0

10
5

iteration

re
la

tiv
e

re
si

du
al

Jacobi preconditioned CG

0.3 Poisson ratio
0.4 Poisson ratio
0.45 Poisson ratio
0.49 Poisson ratio
0.499 Poisson ratio

0 50 100 150

10
−5

10
0

10
5

iteration

re
la

tiv
e

re
si

du
al

Block Jacobi preconditioned CG

0.3 Poisson ratio
0.4 Poisson ratio
0.45 Poisson ratio
0.49 Poisson ratio
0.499 Poisson ratio

0 10 20 30

10
−5

10
0

10
5

iteration

re
la

tiv
e

re
si

du
al

Overlapping additive Schwarz preconditioned CG

0.3 Poisson ratio
0.4 Poisson ratio
0.45 Poisson ratio
0.49 Poisson ratio
0.499 Poisson ratio

0.3 0.35 0.4 0.45 0.5
10

0

10
1

10
2

Poissons ratio

S
ol

ve
 ti

m
e

(s
ec

)

Included sphere − Solve times vs. Poisson ratio

Jacobi
Block Jacobi
additive Schwarz

Figure 6.5: Residual convergence for included sphere with incompressible cover material

(Note, di�erent scale for overlapping additive Schwarz)

relative performance of overlapping Schwarz in parallel, as it requires communication and

as we do not have global coarse grids and hence can not reproduce our serial semantics

in parallel. This leads to the conclusion that as the physics of our problems get more

challenging we need more powerful smoothers, for optimal performance.

98

0 500 1000 1500 2000 2500 3000 3500
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

spectrum

ei
ge

n
va

lu
e

0.3 Poisson ratio

0.4 Poisson ratio

0.45 Poisson ratio

0.49 Poisson ratio

0.499 Poisson ratio

0.4999 Poisson ratio

0.49999 Poisson ratio

Figure 6.6: Spectrum of 3,800 dof included sphere with incompressible cover material

99

6.6 Poorly proportioned elements

This section investigates problems with poorly proportioned elements. It is well

known that the use of elements with large aspect ratios severely degrades the performance of

iterative solvers [80, 83]. The reasons for this are not well understood; though the condition

number of the elements does increase the overall condition of the matrix does not rise

dramatically. For these tests we use a model of a truncated hollow cone, shown in Figure

6.7 with the deformed shape and the �rst principal stress. These elements have aspect

ratios in of about 12 : 5 � 9 : 1. This problem has 21; 600 dof and a condition number of

3:6 � 107 - the total solve required 27:4 seconds (19 iterations) on one node of a Cray T3E.

A matrix vector product takes about 0:0283 seconds, thus the total solve time

(coarse grid matrix vector products and the actual solve) takes the time required to do

� 970 matrix vector products. Figure 6.8 shows the convergence history of this problem.

These results show that this method has the potential to be e�ective on thin body elasticity

problems with poor aspect ratio elements. Additionally, in our experience, these types of

problems bene�t greatly from our heuristics described in x5.3.

 1.08E+00

 5.51E+00

 9.93E+00

 1.44E+01

 1.88E+01

 2.32E+01

-3.35E+00

 2.76E+01

 PRIN. STRESS 1

Current View
Min = -2.54E+00
X = 0.00E+00
Y = 7.87E+00
Z =-6.48E+01
Max = 2.65E+01
X = 2.71E+02
Y =-8.16E-01
Z =-4.06E+01

 Time = 3.37E+30

Figure 6.7: Cantilevered hollow cone, �rst principal stress and deformed shape

100

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iterations

re
la

tiv
e

re
si

du
al

Relative residual vs. iteration

Figure 6.8: Residual convergence for Cone problem

6.7 Conclusion

This section has demonstrated many of the characteristics of multigrid solvers

for computational mechanics problems on model problems designed to isolate some of the

more common components of problems in solid mechanics. We have shown that multigrid

has the potential to be an e�ective solver for the challenging problems in industry and

academia. We have identi�ed some of the characteristics of solid mechanics problems that

make them hard for iterative solvers, e.g. incompressibility, thin elements, large jumps in

material coe�cients, and curved surfaces. The next chapter discusses the performance and

parallelism issues of multigrid on large scale �nite element problems.

101

Chapter 7

Parallel architecture and

algorithmic issues

This chapter discusses general parallelism issues of �nite element codes, archi-

tectural details of our parallel �nite element implementation, our parallel �nite element

programming model, and parallel algorithmic issues of large scale parallel �nite element

implementations.

7.1 Introduction

We proceed by discussing parallelism issues in large �nite element codes and \al-

gebraic" multigrid methods in x7.2. x7.3 describes our parallel �nite element design and

implementation. We discuss our programming model for the complete parallelization of

an existing large �nite element code with minimal modi�cation to, and no parallel con-

structs in, the existing �nite element code. We conclude with algorithmic issues associated

with optimizing performance of multilevel solvers on common parallel computers in x7.4,
by developing algorithms for grid agglomeration, useful in mitigating the inherent parallel

ine�ciencies of the coarsest grids in multigrid solvers.

7.2 Parallel �nite element code structure

This section discuses parallelism issues of �nite element codes and \algebraic"

multigrid methods. This section proceeds as follows: x7.2.1 discusses the e�ect of the

102

time integrator on the structure of �nite element codes; x7.2.2 discuses parallelism in �-

nite element codes; x7.2.3 discuses graph partitioning; x7.2.4 describes parallel computer

architectures of today; x7.2.5 discusses the need for multiple levels of partitioning on high

performance computers; x7.2.6 touches on overall solver structure and complexity.

7.2.1 Finite element code structure

Here we review, and the next section will extend, the basic steps of the �nite

element method as listed in x2.2. The �rst four of these steps do not have a signi�cant

impact on the code construction, but the �fth step \Formulate a time integrator for the

PDE" does have a major impact on the code construction and problem characteristics.

One of the distinctions among �nite element implementations is whether a code

is an \implicit code" or an \explicit code". This is a bit surprising as the time integrator

may not be the most distinguishing aspect of a �nite element package. One would think

that a \uid or solid or multiphysics" distinction would be more important. One might also

think that \linear or nonlinear", or \transient or static" would be a more important way to

categorize a code - yet the \implicit or explicit" descriptor seems to play a far greater role

in the construction of �nite element implementations than one would initially expect.

An implicit method must apply the inverse of the linearization (the sparse sti�ness

matrix) of the residual to the residual - this inverse is a dense operator. An explicit method

applies the inverse of the mass matrix to a vector - the mass matrix can be approximated

with a \lumped", or \block diagonal," mass matrix e�ectively, and thus its inverse is not

dense. Herein lies the source of the di�erence in the structure of implicit and explicit codes.

The source of the e�ect of the time integrator on �nite element codes can to some

degree be attributed to the fact that direct solvers have dominated much of the �nite element

community in the past. Direct solvers for the sti�ness matrix have time complexity O(n2)

for 3D �nite element problems with n degrees of freedom (dof), whereas the application

of the elements to form the residual and the application of the inverse of the mass matrix

have time complexity O(n). The result of this fact is that the performance of implicit

codes is dominated by the solver whereas the performance of explicit codes is dominated

by the element application - optimizing performance for these two endeavors requires very

di�erent techniques. Note that although iterative methods are about O(n) in time and

space complexity, and are often more easily parallelized than direct methods, the constants

103

of iterative methods (for most interesting �nite element applications) are still much larger

than that of the element code - thus the solver will remain the bottleneck with iterative

solvers also.

The optimization of an element formulation requires many di�erent \small" nu-

merical operations (e.g., tensor operations in element material constitution, inversions of

small Jacobians, sometimes small nonlinear solves, and many other operations), all of which

require intimate knowledge of the �nite element formulation. Element optimization has tra-

ditionally been done entirely by engineers; whereas direct solver performance is primarily

in the realm of a numerical linear algebraist, as sparse direct solvers are used in many dis-

ciplines. Thus the di�erent nature of optimizing implicit and explicit codes is one source

of the inuence of the time integrator on the structure of �nite element codes. This disser-

tation is concerned with solvers (step seven in x2.2), and thus we assume that an implicit

time integrator is in use, or an explicit method that uses preconditioning to \soften" the

operator [65].

7.2.2 Finite element parallelism

The parallel implementation of the �nite element method requires that we augment

the basic steps in x7.2.1 and x2.2. At some point the domain requires partitioning, as

inter-processor communication costs are inherently a bottleneck if they are not minimized.

Traditionally sparse matrix implementations use a block row (or block column) partitioning

of the matrix storage - this implies that a row or nodal partitioning is su�cient to parallelize

the matrix storage, as �nite element matrices are structurally symmetric. A high degree

of scalability requires partitioning all of the work and storage for each vertex and each

element. Any non-parallel constructs, or signi�cant parts of the code that do not scale well,

will inict severe performance penalties as the scale of the problems increase.

The partitioning, or parallelization, needs to be brought into the system as early

as possible to allow for the maximum amount of scalability and must itself be parallelized

for the scale of problems that are of interest to this dissertation. Additionally the back end

of the system (the last step in x2.2) should remain parallel for as long as is possible. We

have elected to draw the line for parallelism of the �nite element system after the mesh

generation but before the partitioning (although if a parallel mesh generator were available

it would be simple to insert); and we go back to the serial code after the solve but before

104

the visualization.

7.2.3 Parallelism and graph partitioning

Mesh partitioning is central to parallel computing with unstructured meshes and

we thus discuss some of the basic issues and algorithms involved. Mesh partitioning is

the assignment of each vertex and element to one processor p of the P processors, thereby

de�ning a set of local vertices an elements for each processor. Note, we partition elements

and vertices as most of the costs of a �nite implementation can be e�ectively Because of

the size of our our �nite element problems and the (increasing) ratio of processor speeds to

communication speeds, we need to have each processor be responsible for many more than

one vertex. The physical nature of �nite element graphs (i.e., vertices communicate only

with physically close vertices), allows graph partitioning to be very e�ective at reducing

the amount of data required from other processors, which is generally several orders of

magnitude more expensive to use than local data. Thus, as we want good scalability (at

least at the algorithmic level), a nontrivial nodal partitioning (and the related element

partitioning) must be computed.

Partitioners attempt to minimize communication cost by minimizing the number

of ghost vertices on each processor (ghost vertices are non-local vertices that are connected

to at least one local vertex), and the amount of load imbalance i.e., the maximum amount of

work for any one processor divided by the average amount of work per processor. In general

one wants to weigh the cost of load imbalance and the cost of a ghost, along with the number

of neighbor partitions, to de�ne an optimization problem. Most partitioning methods try

to minimize edge cuts (as a heuristic to minimizing ghosts), with the constraint that the

number of vertices per partition are equal within some tolerance. In attempting to optimize

the solution time of an iterative solver it is natural to optimize the performance of the matrix

vector product, as this is where a majority of the computation takes place. Also, essentially

all of the communication takes place in the matrix vector product, thus its optimization

is essential for parallel e�ciency. Thus we can, and do, simplify the partitioning problem

to that of optimizing the matrix vector product. This optimization is relatively simple, as

opposed to partitioning for sparse matrix factorizations. Not all vertices in a �nite element

problem are associated with the same amount of computation (especially in domains where

di�erent physics exist), so it is desirable to not simply place equal number of vertices in

105

each partition but to put equal amounts of work (i.e. oating point operations and data)

in each partition.

Partitioners that are of interest today fall into two groups: geometric partitioners

[42] and multilevel partitioners [53, 46]. Geometric partitioners have low complexity (as

low as O(1) in PRAM, see x1.7) and use vertex coordinates only to separate the graph

into two roughly equal pieces - applied recursively they can generate partitions with 2k

partitions. These partitioners can be shown to produce partitions with (expected) separator

sizes within a constant factor of optimal i.e., the size of the set of vertices that separates a

graph, with bounded aspect ratio elements, into two unconnected pieces is O(n
D�1
D), and

within a constant of optimal load balance [42]. These methods do not however look at the

edges in the graph but instead rely on the \physical" nature of �nite element graphs to

minimize edge cuts by minimizing the number of vertices \near" a cut.

Multilevel partitioners rely on the notion of restricting the �ne graph to a much

smaller coarse graph, by using maximal independent set or maximal matching algorithms.

This process is applied recursively until the graph is small enough that a high quality parti-

tioner such as spectral bisection [47] or k-way partitioners can be applied. This partitioning

of the coarse problem is then \interpolated" back to the �ner graph - a local \smooth-

ing" procedure (e.g., Kernighan-Lin [54]) is then used, at each level, to locally improve the

partitioning. These methods have polylogarithmic in n complexity though they have the

advantage that they can produce more re�ned partitions and can more easily accommodate

vertex and edge weights in the graph. We use a multilevel partitioner as a good public

domain implementation exists - ParMetis [52].

Coarse grid partitioning

Chapter 5 described our method of \promoting" vertices to coarse grids; this

chapter has discussed partitioning the �ne grid - we have yet to de�ne the partitioning of

the coarse grids. We have a natural partitioning for the coarse grids, as our coarse grid

vertices are derived from �ne grid vertices. This natural partition is, however, not adequate

for many classes of problems.

One must explicitly repartition the coarse grids - even if the �ne grid is perfectly

balanced the coarse grids are in general unbalanced. One source of imbalance is intentional,

nonuniform coarsening in the domain [64]. Another source of imbalance is nonuniform

106

subdomain topologies (e.g., an area with \line" topology like a cable, and areas with \thin"

topology) coarsen at di�erent rates from each other and from \thick body" subdomains

(x5.3). On our uniform problems, the load imbalance increases only mildly as we go up the

grid hierarchy; nonuniform problems however develop severe load imbalance and thus we

repartition the coarse grids (note, ParMetis provides services to improve existing partitions

with minimal vertex movement).

7.2.4 Parallel computer architecture

Common computer architectures of today have a hierarchy of memory storage

components. The top of the memory hierarchy are the registers - data must be in registers

to be used. Below the registers are often two or three levels of cache, next is main (local)

memory, and other processor elements (PE) main memories, then disk, and so on. Moving

data between levels of the memory hierarchy is generally far more expensive than performing

oating point operations on data in registers, thus communication is often the bottleneck

in numerical codes. Figure 7.1 shows a schematic of the common computer architectures of

today.

level 1 cache

registers

main memory

level 2 cache

. . . .

Cluster of SMPs (CLUMPs)

SMPSMP . . .

Distributed memory computer

Uni-proc.Uni-proc. . . .

Symmetric multi-processor (SMP)Uni-processor

Uni-processor Uni-processor

main memory

memory memory

networknetwork

Uni-processor
computer

Figure 7.1: Common computer architectures

107

Some sort of partitioning is required for all of these levels, as we see in the next

section. We explicitly partition once for \at" machines, and twice for clusters of symmetric

multi-processors (SMPs), which we call \CLUMPs".

7.2.5 Multiple levels of partitioning

A reason for multiple levels of partitioning is minimize movement of data between

levels of the memory hierarchy on todays computers. Our problems (multiple degrees of

freedom per vertex) are naturally partitioned for registers, though perhaps not optimally.

Local matrix vector products require matrix ordering to optimize cache performance (uti-

lizing a graph partitioner is one method [82]).

In the case of CLUMPs, we partition our domain to the SMPs �rst, as communi-

cation is much faster (at least in theory) within an SMP, we then partition to each processor

within the SMP. We use a at MPI programming model (one thread per processor); the

message passing layer can be optimized with a multiprotocol MPI [62], to communicate

more quickly within an SMP than between SMPs, although the SMP cluster that we use

(Blue-TR at LLNL) does not yet have a multiprotocol MPI implementation thus multiple

levels of partitioning is not currently of bene�t. Alternatively a multithreaded matrix vector

product could be used, to take advantage of the shared memory, and thus use a non-at

programming model for some parts of the code. The purpose of the second partitioning

phase, on each SMP, is to minimize the communication within the SMP; even if a multi-

threaded matrix vector product were in use, this partitioning would serve to minimize cache

misses on the left hand side vector.

7.2.6 Solver complexity issues

For our overall non-linear solver, we use a Newton-Krylov-Schwarz solution method

[55] - that is, our multilevel Schwarz algorithm (discussed in the last chapter) is used as

a preconditioner for a Krylov subspace method (discussed in the chapter 2) which in turn

is used as an approximate linear solver in an outer Newton iteration (see any numerical

analysis text for a description of Newton's method [56]). The complexity of our system is

governed primarily by the application of our multigrid preconditioner.

Global communication (such as dot products, or other \small" global reduction

operations) are in general required in each of the control steps (e.g., time step selection,

108

Newton convergence checking, and solver convergence checking), and within the solver itself

if a Krylov subspace smoother is used - these reductions are the most non-scalable constructs

in our algorithms (i.e., the log(P) or log(n) terms in the PRAM complexity). The constants

for the log(n) terms are small, but will increasingly become important as the scale of

problems increases.

7.3 A parallel �nite element architecture

Our code - ParFeap - is composed of three basic components:

� Athena is a parallel �nite element code (without a parallel solver) that uses ParMetis

[53] to partition the �nite element graph, then constructs a fully valid \serial" �nite

element problem, and �nally runs a serial research �nite element implementation -

Finite Element Analysis Program (FEAP) [36] - to provide a well speci�ed �nite

element problem on each processor.

� Epimetheus is an \algebraic" multigrid solver infrastructure that provides a solver to

Athena, a driver for Prometheus and an interface to PETSc [10] (x7.3.2) and numerical
primitives not provided by PETSc (i.e., the matrix triple product and a Uzawa solver

x10.6).

� Prometheus is our restriction operator constructor - the core of the research work

for this dissertation.

Athena, Epimetheus, and Prometheus are implemented with about 30,000 lines of C++

code, PETSc and ParMetis are implemented in C, and FEAP is implemented in FORTRAN.

7.3.1 Athena

We have developed a highly parallel �nite element code, built on an existing serial

research \legacy" �nite element implementation. Testing iterative solvers convergence rates

requires that challenging test problems be used - test problems that test a wide range of

�nite element techniques. We needed a full featured �nite element code, but full featured

�nite element codes are inherently large, complex, and not easily parallelized. Thus by

necessity we have developed a domain decomposition based parallel �nite element program-

ming model, in which a complete �nite element problem is built on each processor. This

109

abstraction allows for a very simple though expressive interface, and required only very

simple modi�cations to FEAP.

Athena uses ParMetis [53] to calculate a mesh partitioning, and then constructs

a fully valid (though not necessarily well posed) �nite element problem for each processor.

In addition to the \local" vertices for processor p, prescribed by the vertex partitioning V L
p

(x5.2.1), duplicate vertices are required (i.e., \ghost" vertices that are required for some

local computation but are not in V L
p). The partitioning also requires duplicate elements,

as each partition must have a copy of all elements that touch any local vertex if one wishes

to calculate the sti�ness matrix without any communication (although with redundant

computation). The displacements or Dirichlet boundary conditions must be applied redun-

dantly (i.e., on ghosts), whereas the loads (Neumann boundary conditions) must be applied

uniquely to maintain the semantics of the problem (as residuals or forces are added into

a global vector) - if elements are not redundantly applied (otherwise the residuals for the

ghost vertices are ignored). Materials are speci�ed by index, bound to the elements in the

partition, and speci�ed at run time with a \material �le" described below.

A slightly modi�ed serial �nite element code runs on each processor. Though

the serial code is modi�ed it does not have any parallel constructs or knowledge of the

global problem - this is useful for debugging and the continued independent development

of FEAP. Parallelism is introduced by providing the �nite element code with a matrix

assembly routine, solve routine, and a global dot product (additional support functions are

provided for expressiveness and performance but are not strictly necessary). The global dot

product is hardwired for a vector of the type x or b in an equation like Ax = b (where A is

the sti�ness matrix for the entire local �nite element problem), and thus allows for a very

simple parallelization of the serial code, that with the addition of a \solver" is adequate,

for all or most of the global operations in all �nite element codes. This simple interface

could also be adequate for a simple explicit method, where the solver simply needs to invert

a diagonal mass matrix and do a component by component vector-vector product - and

then communicate the solution, on local vertices, to neighbor processors. Any method that

requires other global operations (e.g., a solver with solver speci�c initialization routines) can

be added as needed - thus this interface provides the kernel for a full featured parallel �nite

element implementation. The advantage of this method is that the serial �nite element code

(e.g., FEAP) is completely parallel - and has a very small interface with the parallel code

(e.g., Athena). With the addition of a solver that allocates the parallel sti�ness matrix and

110

global vectors and solves a system of the form Ax = b, many �nite element codes (among

those used in industry and academia) are ready-to-run.

7.3.2 Epimetheus

Prometheus provides Epimetheus with restriction operators, and Athena uses

Epimetheus to solve the equations. Epimetheus uses METIS [52] to determine the block

Jacobi subdomains and PETSc for the parallel numerical library and programming develop-

ment environment. Future workmay include adding an interface to the parallel unstructured

multilevel grids that we use to construct our coarse grids as these are generally useful for

anyone building a parallel \algebraic" multigrid code, or in fact any parallel algorithm on

unstructured multilevel grids, similar to how Kelp [8] and Titanium [85] provide parallel

multilevel structured grid primitives.

7.3.3 Prometheus

FEAP provides Prometheus with the local �nite element problem (that was orig-

inally constructed by Athena) i.e., coordinates, element connectivities, material identi�ers,

and the boundaries conditions. Prometheus constructs the global restriction operators for

each grid, and is the core of the algorithmic contribution of this dissertation discussed at

length in chapter 5.

7.3.4 Athena/Epimetheus/Prometheus construction details

This section discusses some low level details of our code construction; this is not

intended to be a manual or speci�cation but is intended to provide enough details so that

the interested reader can get some idea of the interface and architecture. Note, for the

interested reader, the FEAP manual can be found in [36].

To run our system one must �rst input a problem into a serial version of FEAP,

using FEAP's simple mesh generation, then output a mesh �le (a FEAP input �le) in a

\�xed" format so as to allow it to be read e�ciently in parallel - this �le is the input to

Athena. If one had a scalable mesh generator to provide the mesh at run time, then one

would only need disjoint vertex and element partitionings and provide each processor with

its vertices and elements (there are no constraints on the properties of these partitions other

111

than being disjoint). Alternatively one could transform a pre-generated mesh into our (at

FEAP) format easily as it is very simple.

One can now run ParFeap with three input �les: the large at FEAP input �le and

two small �les, one with the material parameters and the other with the FEAP-solution-

script; FEAP's command language is used to invoke Athena routines from this FEAP-

solution-script, as well as invoke FEAP commands (see Figure 7.2). We will not discuss

the \material �le" further, but the FEAP-solution-script is of interest as it uses FEAP's

command language and is an important component of the user interface with ParFeap

(again, documentation details may be found in [36]). Athena can now be run with any

number of processors, including one processor, with no further preparation. This exibility

drives this design, as it is paramount for solver development (e.g., debugging, experimenting

with new methods, and collecting performance data).

Within the FEAP-solution-script, displacements can be written to a �le after time

step is complete. The serial version of FEAP is then invoked, FEAP's \read" command is

used to open the �le (for example \read,disp" reads in the displacements in a �le named

\disp"), and the results can then be visualized using the serial version of FEAP. If a more

sophisticated visualization tool were available, it could be inserted here. Figure 7.2 shows

an example FEAP-solution-script that initializes Prometheus (mgin), makes four coarser

multigrid levels (mg++), �nalizes the data structures (mgfn) - then does a simple linear

pseudo time stepping problem and writes out the displacements at each step.

Figure 7.3 shows a graphic representation of the overall system architecture.

112

batch ! begin batch block

mgin ! initialize Prometheus

loop,,4

mg++ ! make a new level

next

mgfn ! �nalize the multigrid setup - prepare for a solve

dt,,0.01 ! set the \time" step

prop ! use a \prop"ortional load

loop,time,10 ! loop for 10 time steps

time ! increment the time

tang,,1 ! form and solve the tangent (sti�ness) matrix

mgds ! write a PETSc displacement �le

next

mgds,end ! collect displacements and write to FEAP �le

end ! end batch block

inte ! begin interactive mode

Figure 7.2: FEAP command language example in the FEAP-solution-script

113

.

.

.

.

.

x (=b/A)

(memory resident) (memory resident)
FEAP fileFEAP file

FEAP input file

FEAP

FEAP FEAP FEAP

METIS

FEAP

ParMetis

ParMetisAthena Athena

Athena

global data

global data

PETSc

Epimetheus
FE/AMG solver interface

Mat. Products (RAR’)

Prometheus
Max. Ind. Sets

Delaunay
FE shape func. (R)

materials file

solution script

Code active in solution phase

file file file file

Parallel finite element code (without solver)

Partition to SMPs

Partition within each SMP

Figure 7.3: Code Architecture

114

7.4 Processor subdomain agglomeration

Subdomain agglomeration refers to reducing the number of active processors and

coalescing (agglomerating) the subdomains on each processor to a new reduced set of active

processors. Subdomain agglomeration is valuable for two entirely di�erent reasons, �rst for

performance and second for algorithmic considerations. As mentioned in x5.2 we partition
many vertices (i.e., O(104)) to each processor - this allows all of the processors to do useful

work in much of the multigrid algorithm - for the \large" problems of today (e.g., 106 -

108 vertices). The di�culty is that, as the number of vertices per processor dwindles the

ability to do work e�ciently decreases. At some point in the grid hierarchy it is e�cient

to let some processors remain idle and agglomerate the work to fewer processors - that is,

the time spent on a grid will decrease if fewer processors are used. Note, agglomeration,

and more signi�cantly repartitioning, can slow the restriction and interpolation operators

on the previous grid - to some degree - though we are not able to quantify this well and thus

must rely on the total run time to justify, and optimize, agglomeration. Also, agglomeration

requires data movement in the setup phase, though as agglomeration takes place when there

are very few vertices per processor the cost is not signi�cant.

A second reason for the use of processor agglomeration comes from the multigrid

algorithm that we use, both in terms of mathematics and practical implementation issues.

Mathematically, when any multigrid algorithm uses a block Jacobi preconditioner in the

smoother you no longer have the \same solver" in parallel, as on one processor, since one

can no longer maintain the same block sizes on the coarser grids (assuming that a serial

solver is used on the subdomains).

Agglomeration should take place when the value of the global Mop rate (e.g.,

Figure 7.4 (left)), of the operator that one wishes to optimize on your machine, using

the current number of active processors, falls below that of a smaller integer number of

processors. We need a methods to pick the number of processors to use given the structure

of the sti�ness matrix at each level of multigrid. This section will discuss three approaches

to determine, at run time, the number of processors to use for the coarsest grids. First

x7.4.1 will discuss a simple method and introduce some of the concepts and tools involved

in subdomain agglomeration algorithms; x7.4.2 de�nes the problem more concretely as an

integer programming problem. A sophisticated, though complex and intractable, approach

will be discussed in x7.4.3, and the method that we use in our numerical results (x9.6) will

115

be discussed in x7.4.4.

7.4.1 Simple subdomain agglomeration method

We can quantify the point at which this agglomeration should take place for a

particular problem by measuring the performance of the operation (or mix of operations)

one is optimizing for on each level. A simple method is to �rst measure the performance

of the operator on a range of matrix sizes and number of processors. For example, if we

approximate our operator (multigrid on one given level) by a matrix-vector product, then

we can use Figure 7.4.

A simple subdomain agglomeration method is to decide on the \optimal" number

of equations to have on each processor B and, given the number of equations on a grid ni,

use Pi = dniB e processors if Pi � P . From this data we could conclude that the optimal

number of equations per processor is about 300 on the Cray T3E, as this is about where we

have peak oating point operation (op), or megaop (Mop), rates.

10
0

10
1

10
2

10
2

10
3

processors

M
flo

ps
/s

ec

Matrix−vector product: Mflops/sec vs. processors

4K sphere
15K sphere
83K sphere

10
2

10
3

10
4

10
2

10
3

equations / processor

T
ot

al
 M

flo
ps

/s
ec

Matrix−vector product total Mflops/sec vs. equations / processor

4K sphere
15K sphere
83K sphere

Figure 7.4: Matrix vector product: per processor, and total, Mop/sec on a Cray T3E

Experience has shown that this very simple method is not adequate (at least on

some of the platforms that we use), as the optimal number of equations per processor is a

function of P . Also, as our coarse grids tend to be denser than the �nest grid, the number

of non-zeros in the matrix should also be considered, though we do not currently consider

the number of non-zeros.

116

7.4.2 Subdomain agglomeration as an integer programming problem

The optimal number of processors is a constrained optimization problem. First

we de�ne our constraints: obviously we need an integer number of processors, but we are

not free to select any number of processors in our system as our implementation is not

completely exible in the number of processors used. For simplicity of the implementation,

we require that the number of active processors is a factor of the number of processors on

the previous (�ner) grid. For example, if we have six levels and 36 processors, then the

series of processor group sizes f36 36 36 18 12 1g is not valid, as 12 is not a factor of 18;

while the set f 36 36 36 18 9 1g is valid. Note, this constraint is not onerous as the number
of equations drops by a signi�cant fraction (e.g., 4 to 8) on the coarser grids, though it does

demand that we avoid using a number of processors with large primes in their factors.

We want to pick the number of processors to minimize the time to do the work on a

particular level. We neglect the e�ect of agglomeration on the restriction and interpolation

operations as they are not large on machines with good networks, are di�cult to measure

accurately without e�ecting the performance, and there inclusion would signi�cantly com-

plicate the optimization problem (which, as we will see, is already too complex for us to do

directly). Most of the ops, in a level of multigrid, are in the matrix-vector products and

the block Jacobi preconditioner. Block Jacobi preconditioners require no communication,

hence motivate the use of as many processors as there are blocks. Matrix-vector products

have some nearest neighbor communication and, do not speedup perfectly forever as seen in

Figure 7.4. Additionally, the dot products require global communication, but perform very

few ops per dof. Hence the dot products push for fewer processors than other operators,

especially on machines with slow communication.

To select the number of processors P to use on a coarse grid G with an integer

programming technique, one needs an explicit and accurate function T (G;P) for the ex-

ecution time of a particular grid on a particular machine with any number of processors.

Integer programming could then be used to �ne the minimum, with respect to P , of this

function T to decide on the number of processors to partition the current grid on to. The

next section will discuss issues in construction a function T via a computational model.

117

7.4.3 Potential use of a computational model

We can pick the optimal number of processors by modeling the time complexity of

a level of multigrid as a function of the number of processors P , and the number of vertices

n as follows. First we de�ne complexity as the maximum time Tx that any processor spends

in operation x. Note, this is a di�erent de�nition of T than we use in chapter 8 (i.e.,

T = maximum time � number of processors), because here we have already \paid" for the

processors and gain no bene�t from using fewer processors, thus this as a somewhat unusual

cost model. De�ne fp1: the minimum op rate on any processor for BLAS11 operators,

�: the maximum message latency, �: the maximum inverse bandwidth between any two

processors for a double precision oating point number, and ndf : the number of degrees of

freedom per vertex. In other words the time to send a message with n words is � + n � �.
A simple model of dot products is

Tdot(P; n) �
2 � ndf � n
P � fp1

+ (�+ �) log(P)

We will assume perfect load balance and ignore network contention, thus each processor has

exactly n
P vertices and � and � are not functions of P . Note, as all the cost components

are the maximum costs on any one processors, and we are looking for the maximum total

time on any one processor, we use Tdot(P; n) � � � �
To model the cost of the matrix vector product, we can use a simple model (see

x8.5.4 for a more detailed model); assume all vertices have 27 neighbors (i.e. neglect the

boundary and assume that the problem is uniform), and fp2 is the minimum op rate of

matrix vector products on any one processor, Assume there are 6 � (nP)2=3 ghosts vertices

(see x8.5.4), then the matrix-vector product complexity could be modeled as

Tmatrix�vector(P; n) �
2 � 27 � ndf2 � n

P � fp2
+ 6 � ndf � � � n

P

2

3

+ 22 � �

This assumes the maximum number of neighbor processors is 22, as this is a common

maximum that we observe in our numerical experiments.

1BLAS1, BLAS2, BLAS3: Basic linear algebra subroutines (BLASs) refer to a set of subroutine
de�nitions that de�ne an interface for highly tuned machine speci�c implementations of standard linear

algebra operators. BLASs operations fall into three categories, de�ned by the algebraic objects in the

operation. A BLAS1 subroutine operates on vectors and scalars only. BLAS2 operate on at least one vector
and one matrix, and BLAS3 operate on matrices only. These categories are useful as they accurately de�ne

the performance of the operations within them, with BLAS3 operations being the fastest and the BLAS1

being the slowest.

118

We can model the cost of a level of multigrid with diagonal preconditioning by two

dot products and one matrix-vector product i.e., TMG(P; n) � 2 �Tdot(P)+Tmatrix�vector(P)

ignoring the lower order terms e.g., smoother preconditioner, AXPYs. We can minimize

the cost by solving d
dP
TMG(P; n) = 0 for P (assuming that our TMG(P; n) expression is and

equality), with

d

dP
TMG(P; n) =

2(�+ �)

P
� 4 � ndf � n

P 2 � fp1
� 27 � ndf2 � n

P 2 � fp2
� 4 � ndf � � � n2=3

P 5=3
(7.1)

This simple model is however not accurate, as the load imbalance has not been

considered, and the � and � terms need to include the costs of packing, and unpacking,

vector data in the matrix-vector product (note, we de�ne � and � to include this in x8.5.4),
but this reduces the generality of these terms and requires that they be derived from numer-

ical experiments on typical problems. Also, more signi�cantly, the matrix-vector product

expression implies that using more processors always lowers the run time - this is not an

accurate assumption, as � is a function of P , as Figure 7.4 demonstrates for small problems

(i.e. typical coarsest grids). We discuss modeling via operation counting in more detail in

the next chapter, as well as reasons for the discrepancy between these models (see x8.5.5
for matrix-vector product models in more detail).

7.4.4 Subdomain agglomeration method

We currently work with empirical models, based on curve �tting, that use mea-

surements from actual solves. This method has the disadvantage that model parameters

have to be calculated for each machine that the code is to be run on, and may need to

be recalculated for di�erent problem types, but it has the advantage that it is resonably

accurate and simple to construct.

We can start by looking at in Figure 7.5 - the form of the function f that we want.

The concave shape of the curve, for f , in Figure 7.5 is derived from the intuition that as

more processors are in use the log(P) term in the dot products, and any other source of

parallel ine�ciency, will push for the use of fewer processors. For convenience we transpose

this function to get the convex function n = g(P).

Now it is natural to begin to approximate this function with a quadratic polynomial

n = AP 2 + BP , or alternatively
n

P
= A � P + B

119

P

n

P = f(n) for machine X

P

n

n = g(P) for machine X

Figure 7.5: Cartoon of cost function, and its transpose

where n
P
is the problem size per processor. or the function that we actually want

Pfloat =
�B +

p
B2 � 4AC

2A
(7.2)

A and B are machine and problem dependent parameters that are determined by experi-

mental observation on actual multigrid solves of the problem at hand, or from experience

with other problems on the target machine. We have selected A and B by starting with

starting with an initial guess and using a large problem to \search" for the optimal solve

time by perturbing A, measuring the total performance (the only quantity that we can ef-

fectively measure), and \search" for an \optimal" A (we assume that solve time is a convex

function of A); we repeat this process for B, and go back to A, and so on until we �nd the

minimal solve time for this one problem. This will give us good results on similar problems

as the one that we test on.

In a production setting one could automate this process for selecting the coe�cients

(e.g., A and B) for a polynomial (e.g., equation 7.2), by running parametric experiments

(parametric in A and B) with a large representative problem; one could then simply select

the A and B used in the experiment with the fastest solve time, or use curve �tting to

construct a function that can be minimized. Note, this process would be repeated for each

new machine or machine con�guration and for each problem class.

The use of many more processors would likely require that a higher order polyno-

mial or a more complex function be used. Note, for more accuracy one should also use the

number of non-zeros in the matrix in addition to the number of equations n, as this is a

more direct measure of the matrix vector cost, and does not remain constant on all grids.

Equation (7.2) provides us with reasonable results, as we run homogeneous problems (i.e.,

trilinear elements with three dof per node) with an (approximately) even distribution of

non-zeros.

120

P

B

A

Pick A and B

n/P

Figure 7.6: Cartoon of the \�tted" function

After the number of vertices n on a grid has been determined at run time, A, B,

and equation (7.2) are used to compute Pfloat. After computing Pfloat we �nd the �rst

feasible integer in each direction, above and below Pfloat. For example with 35 processors

and Pfloat = 6:2 in Figure 7.6, we now �nd the two feasible number of processors e.g.,

P1 = 5 and P2 = 7 in Figure 7.4.4. We pick P to be the closer of P1 and P2 to Pfloat as the

7 81 2 3 4 5 6 9

P1 P P2

P = 35

Figure 7.7: Search for best feasible integer number of processors on 35 processors, if p = 6:2

result of this method.

121

Chapter 8

Parallel performance and

modeling

This chapter discusses performance modeling for multigrid solvers in general and

our solver in particular.

8.1 Introduction

Accurate time complexity models based on operation counts are very challenging

on todays parallel machines; even for regular problems (i.e., parallel dense linear algebra)

accurate computational models can be intractable because of the many contributors to

performance and their complex interactions [79]. Previous multigrid modeling work, for

regular 2D grids on a 1,024 processor NCUBE (run with approximately 10�2 times as many

non-zeros per processor as is typical today), can be found in [84]. This chapter discusses

complexity issues and models of 3D unstructured multigrid solvers.

The goal of this chapter is to develop the basis for a useful model to predict the run

time, and memory usage, of multigrid solvers with unstructured �nite element meshes on

typical computers of today. An accurate complexity model of this type is beyond the scope

of this dissertation, however, we will discuss qualitative models useful in understanding the

overall complexity of multigrid solvers, begin to develop quantitative models of some of the

major components of multigrid solvers, and present a framework for a multigrid complexity

model. Additionally this chapter will discuss our performance measures, which will be used

in our numerical experiments in chapters 9 and 10. Thus, the primary goal of this chapter

122

is to introduce the overall complexity structure of multigrid on unstructured meshes and

begin to develop a complexity model via a decomposition of multigrid and analysis of some

of its components.

Our complexity models will �rst decompose multigrid into components whose in-

teraction, with each other, can be ignored. We assume that all of our models are static

in that we are able to count for all of the work to be done in a solve, at least to the level

of detail that we articulate in our decomposition. At some point our decomposition takes

the form of a functional decomposition (e.g. time to apply an operator = number of ops

� ops per second). At the component level one may resort to a bottom-up model that

is based on low level (and general) machine speci�cations such as clock rate, cache size,

network speci�cations, etc, or one can use a top-down approach of measuring the code

component on a particular machine with various inputs and curve �t the function to ap-

proximate the measured data [15]. See Table 8.1 for the pros and cons of bottom-up and

top-down approaches.

Pros and cons

top-down bottom-up

Needs running implementation can predict performance on new machines,

on a give machine or without implementations

can predict performance only for di�erent may badly underestimate time depending

parameter values on a given machine on whether all operations are counted

takes all interactions into account may be very hard to count all operations

or model their interactions

may or may not account for irregular operations may require

irregular operations approximating work per processor

Table 8.1: Top-down vs. bottom up performance modeling

This chapter proceeds as follows: x8.2 discusses the motivation for complexity

modeling, the notation and the complexity models that we use. x8.3 presents a simple

computational model based on PRAM [41] that is used to speculate on the scale of future

multigrid solves and is intended to introduce multigrid complexity by providing an overall

view of the complexity of multigrid solvers. x8.4 discusses the high level structure of our

cost model, and introduces our primary metric (e�ciency). x8.5 discusses the scope of our
model, the primary cost components of the multigrid solution phase, models for some of the

primary solver components, and quantitative measures of the complexity of unstructured

123

multigrid solvers. x8.6 will conclude with a sketch of a path for continuing to develop our

complexity model.

8.2 Motivation, computational models, and notation

There are several reasons for developing performance models and performing com-

plexity analysis of a multigrid code. First, multigrid solvers have many parameters (e.g.,

number of processors, subdomains, smoothing steps, etc.) and many algorithmic choices

(e.g., additive or multiplicative methods) - so one would like to make these choices on a

rational basis since experience shows that performance can be a sensitive function of these

parameters. A second use of performance modeling is to identify bottlenecks in the code

that are an artifact of a code bug, a system problem (e.g using non-optimal system pa-

rameters or system bugs), platform speci�c behavior (e.g., a poor contention management

implementation in the communication system might require more synchronous communica-

tion patterns), or some other \�xable" problem. A third reason for performance models is

to project the behavior of your algorithm on new or future machines so to make informed

purchasing decisions and so that system manufacturers can make informed decisions about

the their system design (assuming that the manufacturer is interested optimizing the per-

formance of their products for your application). Additionally performance models can be

used to chose the optimal number of processors to employ at any given level as discussed

in chapter 7, and to estimate resource needs on shared machines.

8.2.1 Notation and computational models

We need to decide which operations to count in our performance model. We use

two complexity models of the underlying machine: PRAM and LogP [26].

For some algorithms we use the RAM (random access memory) and PRAM (par-

allel RAM) complexity models, as a basis for high level discussions and occasionally en-

rich them. The RAM model makes the simpli�cation that all memory can be accessed in

constant time (1) and primitive operations (i.e., +;�;�;� also take the same constant

time. The PRAM model builds on the RAM model and includes parallel constructs - it

assumes that sending and receiving data, from and to any process, can also be done in

constant time per data word. PRAM models come in many types: all combinations of

concurrent(C)/exclusive(E) and reads(R)/writes(W), concurrent reads and exclusive writes

124

(CREW) being the most intuitively realistic for a general computer program, queued write

and others. We do not distinguish between these PRAM models in our work as we work

primarily with a distributed memory programming model, however if it is not otherwise

stated we assume the CREW PRAM model. The advantage of the PRAM model is its

simplicity; this simplicity is also its limitation as communication costs can be very complex.

The second model that we use, LogP [26], models the communication system

more realistically. We use the LogP model in the more detailed discussions of multigrid

complexity - LogP models, the overhead in communication (overhead o), network (inverse)

bandwidth and capacity (gap g), and network latency (latency L). P stands for the number

of processors.

The overhead o is the time that the processor uses to process an MPI message

plus the time that our solver (PETSc actually) spends collecting, packing, unpacking and

placing data to and from a message. Gap g is the period during which messages (of a given

size) can be processed by the network without stalling. Latency L is the time that it takes

between the time that message is sent (by the application, via an MPI call) and the time

that the application receives the message on another processor. We will use a simpli�ed

version of LogP and let � = O+L and � = g. Often empirical data is available in the form

of measured time for an operation t, the number of processors involved in communication

p, and an average number data words n in the communication with each processor, thus we

look for functions of the form t = f(p; n) = p � (�+ n � �).

Notation

Multigrid requires many parameters; Figure 8.1 labels the components and nota-

tion, of a multigrid solve, that we will use throughout this chapter.

125

L � number of levels in multigrid

i � grid number (i = 0 for the �nest grid and thus i = L� 1 for the coarsest grid)

Pi � number of processors active on grid i

ni � number of total degrees of freedom on grid i

D � dimension of problem (e.g., 3)

ndf � degrees of freedom per vertex (e.g., 3)

s � number of pre/post smoothing steps (e.g., 2)

k � number of iterations in global linear solution

bi � number of blocks in block Jacobi preconditioner on grid i

Ai � matrix on level i

Ri � Restriction operator from grid i to grid i+ 1

Pi = RT
i � Interpolation operator from grid i+ 1 to grid i

Mveci � Matrix vector multiply on grid i (Ai � x! b)

V ecDoti � vector dot product on grid i (yTi � xi)
V ecNormi � vector norm on grid i (

q
xTi � xi)

Axpyi � �xi + yi ! yi

Restricti � Ri � ri ! ri+1

Interpolatei � Ri
T � xi+1 ! xi

TriProdi � Ri �Ai �RT
i ! Ai+1

Fi � Full factorization of matrix Ai

Si � Forward elimination and back substitution with the factored Ai

F
j
i � Factorization of the matrix for a subdomain j of Ai

S
j
i � Forward elimination and back substitution with the factored subdomain matrix j of

Ai

Nneigh � maximum number of neighbors of any processor domain.

F (x) � Flops in one application of operator x.

C(x) � Communication time in one application of operator x.

T (x) � Time to do one application of operator x.

Figure 8.1: Multigrid computational components labels and parameters

126

8.3 PRAM computational model and analysis

Before we articulate a more detailed complexity model of multigrid solvers, we

develop a simple model with an optimistic machine that we hope can be built in the future.

We use PRAM-like complexity models (PRAM with some simple enhancements). PRAM

is far too blunt a tool to model the performance of these codes, but it does provide a means

of seeing the big picture. We also exercise this model by speculating on the scalability of

the multigrid algorithm that we use, by de�ning a \base" case with no signi�cant parallel

ine�ciency (in our model), and stipulating that we are only willing to solve problems with at

least 50% parallel e�ciency (see x8.4.1 for the de�nition of parallel e�ciency); we show that

problems of the order of trillions of unknowns could be solved with our current multigrid

algorithm. This is meant to bring some perspective to the scale of problems that could be

addressed with our multigrid solver.

We will model only the multigrid preconditioner and ignore the accelerator, and

assume that we are using diagonal preconditioning for our smoothers. We ignore the AXPYs

and other BLAS1 operators that require no communication, and the factorization cost on

the coarsest grid L as this is a small constant shared by all solves. We also neglect the cost

of the coarse grid construction and any subdomain setup, Thus we need only model the

matrix-vector products, the dot products, and the forward elimination and back substitution

on the coarsest grid.

Assume that we have 64K equations per processor on the �nest grid - this is a bit

larger than our common size but is reasonable on a well con�gured machine, with about 256

Mb of main memory per processor and a production quality implementation of our solver

and PETSc (chapter 11). Assume a reduction of a factor of 8 on each successive grid, and

that we have nL�1 = 4K equations on the coarsest grid. Let us also assume that we are

only willing to tolerate 128 equations on a processor before we \agglomerate" subdomains

(x7.4) - and that this number is independent of the number of processors. Note, all of

the coarsest grids have 128 equations per processor in this discussion. In this model, the

number of levels L = log8(
n0
4K) = log8 n0 � 3, n0 being the global number of equations on

the �ne grid (assume n0 is a power of eight).

First, de�ne S(ni
Pi
) to be the cost, in time, of one level (not the coarsest level) in

a multigrid \V" cycle, with ni
Pi

equations on each processor - assume that this is a linear

function in ni
Pi
, except for the parallel ine�ciency of the matrix vector products and the time

127

in the global reductions (dot products) which have a log(P) in their PRAM complexity. A

good communication network is essential in containing the costs of these reductions (see

x9.5) - many machines in the past have networks that could handle reductions e�ectively

(CM5, Intel ASCI Red at Sandia National Laboratory [7]). We temporarily neglect the

log(P) terms (two in each iteration of the Krylov subspace method smoother) because they

have small constants, the range of performance on machines of today varies enormously, and

these terms are di�cult to capture in this model - though we accommodate them below.

This assumption that the cost of S(niPi) is linear in ni
Pi
, assumes that the matrix-vector

products scale linearly, this is not realistic as was discussed in x7.4, so we constrain our

problems to have have at least 1K equations per processor, or penalize grids with fewer

than 1K equations per processor. Thus, to account for the fact that the coarse grids run

slower than the �ner grid (i.e., speedup is not perfect forever), we add a factor of 4 to

the costs of the coarsest grids (this reects our empirical measurements of communication

e�ciency, or lack thereof).

De�ne D(nL�1) to be the cost of the coarse grid solve (without the factorization),

with nL�1 equations and as many processors as we like on the coarsest grid (e.g., PL�1 =

32 = 4K
128). We estimate the solve cost of the coarsest grid D(nL�1), in terms of S(

nL�1
PL�1

) =

S(
nL�1
32

) = S(128), as the coarse grid would use 32 processors if it were treated as a non-

coarsest grid. First, we estimate that S(128) is 6 times larger than a matrix vector product

with the sti�ness matrix on the coarsest grid; this is the number of matrix vector products

in S() if we use two pre and post smoother applications and neglect the other terms in the

S() complexity (see Figure 8.8 for an inventory of multigrid component applications). Next,

we estimate that the op count in D(nL�1) is 5 times larger than that in a matrix vector

product on the coarsest grid (this is an approximation using the band width of the sti�ness

matrix for a cube with 4K equations). Thus, D(nL�1) = 5�4
6
S(128) = 10

3
S(128). Note, an

alternative to one small set of processors working on the coarse grid solve is to have nL�1

processors factor the coarse grid, and solve for one row of the explicit inverse of the coarse

grid sti�ness matrix - each solve (i.e., D(nL�1)) consists of a broadcast of the right hand

side vector, a dot product of size nL�1 (on nL�1 processors), and a special interpolation

operator [22].

Now we can state a cost estimate of full multigrid in equation (8.1)

T (n0) = S(64K) + 2 � S(8K) + 3 � S(1K) +
L�2X
i=3

(i+ 1) � 4 � S(128) + L � 10
3
� S(128) (8.1)

128

The factors (2, 3, i+1, and L�1) come from the number time that full multigrid is applied

on each level (see Figure 3.6 and Figure 8.8).

Table 8.3 shows some grid statistics with this model; from this we can see that,

for example, with only two levels of partitioning (i.e., three distinct processor groups) and

L = six levels, we can solve a 128 million degree of freedom problems with 2K processors.

Model Con�guration (example with L = 6 and P = 2K)

Grid number (L total) # active processors # equations per processor Total equations

L-1 (5) 32 (32) 128 (128) 4K (4K)

L-2 (4) 256 (256) 128 (128) 32K (32K)

L-3 (NA) 2K (NA) 128 (NA) 256K (NA)

� � � �
4 (3) 32 �8L�4 (2K) 128 (128) 4K �8L�4 (256K)
3 (2) 32 �8L�4 (2K) 1K (1K) 4K �8L�3 (2M)

2 (1) 32 �8L�4 (2K) 8K (8K) 4K �8L�2 (16M)

1 (0) 32 �8L�4 (2K) 64K (64K) 4K �8L�1 (128M)

Table 8.2: Future complexity con�guration (K = 210 � 103; M = 220 � 106)

As a thought experiment, let us de�ne a \base" case for which there is no signi�cant

parallel ine�ciency, and see how large of a problem can be solved, in this model, with

50% parallel e�ciency described below. Let us de�ne a \base" case to be, the largest

problem in which no processors are idle, except on the coarsest grid, and no grid has a

matrix-vector product with less than 1K equations per processor. Thus, the base case has

2M equations as all processors must be active and have 1K equations on the penultimate

grid, the penultimate grid must have 8 � 4K = 32K equations as nL�1 = 4K; therefore

P0 = P1 = PL�2=2 = 32 and n0 = 2M = 32 � 64K and L = 4. Thus the 2M degree

of freedom problem with 32 processors is the largest problem with no signi�cant parallel

ine�ciency. To get a rough idea of the size of problems that can be solved economically,

with this performance model, we de�ne an acceptable level of e�ciency of 50% relative to

our base case; i.e., we decide that we are willing to allow for twice the compute time for our

largest problem, thus running at one half of the e�ciency of the base case.

How many extra grids can we use, with this model and e�ciency \pain" tolerance?

First let us make a gesture to the log(P) and assume that 25% (or 50% of the extra time) of

our compute costs are going into the communication cost of the dot products - so we only

allow for a 50% longer compute time in the model. Note, this is a constant (though large)

129

approximation to the log(P) terms in the dot products. We have 7 extra levels (L = 11) to

give a problem size of n = 4K � 810 � 4 � 1012, or about 4 trillion equations on about seventy

million processors (a petaop machine).

One should note that this model does not attempt change our basic solver con-

�guration (i.e., full multigrid, and Krylov smoothers). Depending on the machine and

problem, additive formulations and/or \V" cycle multigrid, may be more economical as,

without Krylov subspace method smoothers, \V" cycle multigrid has PRAM complexity of

log(n) whereas full multigrid has PRAM complexity of log(n)2.

This model is meant to give a big picture view of multigrid complexity issues, to

begin to augment the PRAM multigrid models so as to reect the machines of today and

the near future, and to put some approximate constants in the complexity of full multigrid,

with Krylov subspace smoothers and accelerators. Thus, this section has introduced the

broad outlines of multigrid complexity - we are now ready to build a multigrid complexity

theory from the ground up (or from LogP up).

8.4 Costs and bene�ts

Before we set out to model multigrid solvers we will de�ne what we are trying

to accomplish and how we measure success. Our ultimate goal is to solve all sparse �nite

element problems, on unstructured grids - cheaply. The problems that we are concerned

with are accurate simulations of complex physical phenomenon in solid mechanics via �nite

element methods on unstructured meshes; in particular we are concerned with the linear

solve or preconditioning of matrices from such methods. The �rst metric that we introduce

is the bene�t that we wish to enjoy - \all sparse �nite element problems" is not a feasible

goal, nor easily quanti�able, and so we use the number of degrees of freedom (dof) as our

measure of bene�t for which we have costs. We implicitly include \all sparse �nite element

problems" by applying our solver to challenging test problems.

Costs can be de�ned in many ways - we use the run time of sample problems and

apply other costs as constraints, (e.g., memory costs are included by assuming that it is free

but limited to the size of main memory on most of todays machines). We have attempted to

build test problems that are indicative of the \real world" problems that some people want

to simulate and thus provide an approximate prediction of the costs of our solver on some

demanding �nite element simulations. Thus robustness is implicitly included in our analysis

130

by the nature and di�culty of our test problems, and by using methods and parameters

that are indicative of the most e�cient way for us to solve these test problems. Cost is thus

de�ned as the product of the maximum time required, by any one processor, to solve the

problem and the maximum number of processors used.

With costs and bene�ts de�ned, we can describe the overall computational struc-

ture of solvers that is useful in providing broad categories in which all of our costs reside.

There are three basic cost phases of a linear solve.

1. Setup cost per distinct mesh. The setup cost of a con�guration or graph e.g., con-

structing coarse grids and restriction matrices, allocating memory for the data and

setting up communicators and bu�ers for matrix vector products, etc.

2. Setup cost per matrix for a mesh that has been setup. Preprocessing each matrix

for a solve e.g., the LU factorization for a direct method, matrix triple products and

submatrix factorizations for multigrid.

3. Cost for each right hand side associated with a given matrix e.g., backward substitu-

tion for a direct method and the actual iterations in an iterative solver.

All thing being equal, we would in general like to move costs \up" this list, so

they may be done less frequently, and optimize the implementations \down" the list as the

number of applications of these cost components increases as we go move down the list. The

setup cost for each mesh (phase 1) is of the same order as that of one solve on our linear

test case in chapter 9 (though this is very machine and problem dependent), and it scales

about as well as the solver (see Figure 9.9). Finite element applications require many solves

on each con�guration and thus this cost can be amortized by each application of the solver,

thus we do not focus on the cost for each con�guration. Figure 8.2 show the high level cost

features that we measure: the red boxes, or leaves of the cost tree, are where actual work

is done and are the high level code segments that are measured in x9.7 to give an overview

of the \end-to-end" costs of a �nite element simulation.

Now, we want to solve interesting problems cheaply - but how do we know when (or

by how much) we have succeeded? To judge success, we measure e�ciency - the percentage

of \optimal" performance; this gives us a metric that tells us the fraction of \perfection"

that we have achieved for the code or any subcomponent.

131

FE Costs

Solve for "x" (PETSc)

Subdomain factorizations (PETSc)R * A * P (Epimetheus)

Configuration Costs

Solve Costs

Solve Setup

Restriction construction (Prometheus)

Partitioning (Athena/FEAP)

Fine grid creation (FEAP)

Figure 8.2: Finite element cost structure (code segment from 7.3)

8.4.1 E�ciency measures

We de�ne parallel e�ciency e, or scaled e�ciency, as the time to solve a problem

of size n1 on one processor divided by the time to solve a re�ned discretization of the

problem, with nP equations on P processors, such that P �n1 = nP . Thus, parallel e�ciency

e = T (1)=T (P), where T (P) is the time to solve the problem discretization for P processors.

We use time e�ciency because it directly addresses the total cost of solving a

problem when the machine is being used e�ciently. Unscaled \Speed-up" plots (cost of

solving a �xed sized problem vs. number of processors), are a useful diagnostic tool to

judge the robustness of an implementation but are not useful in directly estimating the

cost of using a particular machine. Thus our model of our environment is that we have

a large number of processors (with �nite memory per processor), many patient users with

large implicit �nite element problems, perfect job scheduling, and we select the number of

processors to use for each job so as to maximize job throughput on the entire machine.

We separate the serial e�ciency and the parallel e�ciency - the total e�ciency

being the product of the two. We de�ne the following e�ciency measures, or sources of

ine�ciency:

� serial e�ciency s: the fraction of peak megaop rate (Mop/sec) of the serial

implementation. Peak is de�ned as the Mop rate of the fastest op rate on any

oating point dominated application. The fastest dense matrix-matrix multiply is used

for the peak op rate if available, and the Linpack [29] \toward perfect parallelism"

benchmark is used otherwise.

132

� work e�ciency w: the fraction of ops in the parallel algorithm that are not redun-

dant; i.e., the number of ops in the serial algorithm divided by the number of ops

in the parallel algorithm - on the same problem discretization.

� scale e�ciency z: this is the scalability of the algorithm with respect to ops per

unknown in the RAM complexity model (i.e., the ops done per unknown as the

problem size increases); z is similar to in that it relates to op ine�ciency, though

distinct from w. Work e�ciency w is related to the number of processors used, scale

e�ciency z is related to the size of the problem. Note, \scaled e�ciency" plots that

we use extensively will in general measure all of the parallel e�ciency measures that

are present in the system.

� load balance l: the ratio of the average to the maximum amount of work (ops) that

a processor does for an operation. This is easily measured (and de�ned) as we do not

use any non-uniform algorithmic constructs (i.e., we do not use task level parallelism).

� communication e�ciency c: the highest percentage of time that a processor is

not waiting, processing, packing data, or any other form of work associated with

interprocess communication.

All of the algorithm components that we use, with the exception of the �ne grid

matrix creation (FEAP's element state determination), have perfect work e�ciency i.e.,

w = 1. In our numerical experiments during the �ne matrix creation, each processor

calculates all of the elements that any vertex on a processor touches, and the sti�ness

matrix entries that belong on another processors are discarded; this leads to about 80% work

e�ciency on our test problems and common solver con�guration (i.e., trilinear hexahedra

and about 25; 000 dof per processor). This redundant evaluation of elements runs faster than

exclusive element evaluation, on many machines, as there is no communication required.

Full multigrid is perfectly scalable in the sense that the amount of work (ops)

required for each degree of freedom approaches a constant as the number of degrees of

freedom goes to in�nity, thus z approaches a constant - in theory. In fact, our one processor

problems are large enough that the number of ops per equation is a constant (or as close to

a constant as we can e�ectively measure), as the problem is scaled up (see Figure 9.6). Thus

z e�ciencies are close to 1:0 and we do not discuss them further. Therefore we concentrate

on the ine�ciencies: c,l,s.

133

E�ciency plots

E�ciency has the property that we can measure or model the sources of ine�ciency

and simply multiply them to get a total e�ciency. Figure 8.3 shows a cartoon of a typical

e�ciency plot, and it is instructive to point out some of its more salient features.

perfect efficiency

modeled subdivision

1.0

0.0
1 Processors (p) P

e2

e1Time(1)

Time(p)
*

n * p

np

1 measured time

region of super linear speedup

Figure 8.3: E�ciency Plot Structure

If we identify two sources of ine�ciency e1 and e2, and we can model the e�ect of

only one e�ectively (e.g., e1 = load balance, could be estimated with the number of ops

on each processors, or some other measurable quantity), then we can plot e1 and the total

\measured quantity" time in Figure 8.3 - and the ratio is e2. Also other curves could be

modeled by various means as is described in this section, to provide approximate data on

the particular sources of ine�ciency. Note, this characterization implies that ine�ciencies

are decoupled, in the sense that they could be isolated, and have the same value regardless

of the presence of the other - this is not in general true but is often a close approximation

in our application. Note, these e�ciency plots require that we prescribe the size of each

problem np for each number of processors p - this is not in general possible so we pick the

number of processors for each problem discretization and add a factor (
np
n1�p) to the e�ciency

plots to adjust for this error in our experimental structure.

We also occasionally plot total Mop/sec against processors used (again with

scaled problem discretizations). Total Mop/sec plots are useful as the data is easily mea-

sured for the solve or some part of the code with good load balance and they provide a

useful diagnostic tool to see how e�ciently the machine is being used in the oating point

intensive parts of the code. Mop/sec data is not useful to compare with non-oating point

134

intensive parts of the code like the partitioning and the coarse grid set up phases; nor is it

useful in understanding costs, as they do not include convergence rate - a core component

of the cost of iterative methods.

8.5 Computational model of multigrid

This section introduces a more detailed performance model of multigrid. First, this

model does not take into account the convergence rate of the solver in question, and thus

we only discuss the time to solve a problem with a given number of iterations; con�guration

costs are not generally included, so the only costs that we will be concerned with will be

the matrix setup and the solve costs. Therefore we do not present a complete performance

model that could be used to, for example, provide the number of subdomains to use in

the block Jacobi preconditioner on a given number of processor, on a given machine, and

so on. We concentrate on analyzing the run time of components for a particular solver

con�guration on a particular type of problem, to provide concrete (and more readable)

expressions. To avoid a glut of variables we �x the number of iterations at a value typical of

our test problems. Note, we show, in chapter 9 that the number of iterations, that our solver

requires to achieve a �xed relative reduction in the residual, is not e�ected by the scale of

the problem - thus the assumption of a �xed number of iterations for any one problem is

valid.

We further simplify the analysis by making assumptions about the class of prob-

lems and the solver con�guration, in our model. In particular we assume that we are working

with uniformly \thick body" problems i.e., problems in which coarsening can take place in

all three dimensions at all levels, throughout the domain. We assume that we are using the

symmetrize multiplicative Schwarz method, equation (3.2). Our model could easily be mod-

i�ed to accommodate additive methods but we do not conduct numerical experiments with

additive methods as we have not spent time optimizing them (i.e., we have not introduced

the task level parallelism that makes additive methods attractive).

We assume that the top (coarsest) grid has about 500 degrees of freedom. This is

a rather small problem for the top grid as can be inferred by the fact that the time spent

in the top (coarsest) grid is minute compared to the time of the penultimate grid (x9.6).
There are two reasons for this less than optimal choice of parameters (i.e., using too many

grids)

135

� memory: we are often memory bound and as we have a fully symmetric program-

ming model using a smaller top grid reduces the maximum memory used on any one

processor.

� program development: we want to scale to much larger problems, so we want to

\harden" the algorithms so as to ease the eventual transition to larger problems. A

tiny coarse grid may introduce robustness problems in problem with more complex

geometries, so we wish to try to reveal these issues in preparation for larger machines.

We currently use PETSc's serial sparse solver for the top grid; future work will include

incorporating a parallel direct solver [58] for the coarse grid problem.

For simplicity we restrict ourselves to one set of solver parameters - typical of our

numerical experiments. We assume two (s = 2) iterations of a CG smoother, preconditioned

with block Jacobi with nb � 150 equations per block, thus the number of blocks is bi = d ni150
e.

We let the number of levels L = dlog8(n0)e � 3 (with n0 > 512), this assumes that the

coarsest grid has about 83 = 512 equations. The problem size is n0 = ndf � jV j equations
(ndf degrees of freedom per vertex), and ni � n0

8i
. These will eventually be used in the

multigrid inventory of Figure 8.8 to give us the total component count of a multigrid solve

as a function of problem size n0, and the number of iterations k. We denote the cost (in

time) of an operator x by T (x), the oating point cost by F (x), and the communication costs

by C(x). We do not include load balance in F (x), nor do we explicitly include nonuniform

communication or network contention costs between individual processors in C(x).

This section proceeds as follows, �rst x8.5.1 rewrites the \full" multigrid algorithm

in more detail than we have previously. x8.5.2 discusses models for the sizes of coarse

grids and \ghost" vertices, used primarily in the communication cost models. The costs

of the components are modeled, in terms of oating point operations and op rates in

x8.5.3; communication costs are modeled in x8.5.4. x8.5.5 integrates the communication

and oating point costs; matrix vector products are modeled in more detail as they are one

of the largest costs in most multigrid solves.

8.5.1 Multigrid component labeling

This section enumerates the complexity structure of full multigrid. First let us

show the \full" multigrid cycle that we use, as a preconditioner for a Krylov subspace

method, in all of our numerical experiments in Figures 8.4.

136

x =MultiGrid Fcycle(Ai; b)

if Ai:IsCoarsest()

x A�1
i � b { direct solve

else

�r Ri � b { restrict the residual b to the coarsest grid
�d MultiGrid Fcycle(Ai+1; �r) { recursion to get �rst correction from coarsest grid

x Pi � �d { interpolate correction back to this grid i

r b� Ai � x { form new residual

x̂ MultiGrid V cycle(Ai; r) { approximate solve

x x+ x̂ { add correction

x =MultiGrid V cycle(Ai; b)

if Ai:IsCoarsest()

x A�1
i � b { direct solve

else

x Smooth(Ai; b) { smooth error

r b� Ai � x { form new residual

�r Ri � r { restrict the residual r to the coarsest grid
�d MultiGrid V cycle(Ai+1; �r) { get coarse grid correction

x̂ Pi � �d { interpolate correction back to this grid i

x x+ x̂ { add correction

r b� Ai � x { form new residual

x̂ Smooth(Ai; r) { smooth error

x x+ x̂ { add correction

Figure 8.4: Full Multigrid Cycle

137

8.5.2 Coarse grid size and density

To model the scale of our coarse matrices, we assume that each grid has a factor

of 8(= 2D for D = 3 dimensional problems) fewer vertices than the previous grid. This

comes from the assumption that every other vertex is being \promoted" to the next grid

in each dimension - this is true for regular meshes. This assumption is not always true for

irregular meshes as even on a regular grid a maximal independent set (MIS) in x5.2 could

pick every third vertex resulting in a factor of 27 reduction at each level.

We intentionally randomize the vertex order of the \interior" vertices in our MIS

implementation (subject to the constraints in x5.3.5), to increase the reduction factor - thus

we actually observe reduction factors of about 10 between the �nest and �rst coarse grid

and about 8 on the subsequent grids. Modeling this reduction factor is further complicated

by the fact that the \graphs" on the coarse grid are not, in general, well de�ned in the

sense that they are not graphs of valid �nite element meshes (with either tetrahedral or

hexahedral elements). In fact our code has three graphs associated with each coarse grid i:

� The non-zero structure of Ai (= Ri�1Ai�1RT
i�1 in x2.4.2) which we call Gexact

� The graph of the Delaunay tessellation described in x5.3.5 - GDelaunay (note, this is a

valid �nite element graph)

� The approximate adjacencies that we create immediately after the MIS to facilitate

e�cient implementation of the \symbolic" phase of our code

These algorithmic complexities also present di�culties in making a priori estimates

of the number of non-zeros in the coarse grid matrices. We have observed reduction rates

in the number of non-zeros from grid i to grid i+ 1 of about 5 on problem P1 in chapter 9.

Thus we use 5 for our non-zero (edge) reduction factor for all grids as an approximation.

Number of adjacent processor subdomains and size of \ghost" vertex lists

To model communication costs we �rst characterize the maximum number of ad-

jacent neighboring processors and the number of \ghost" vertices with which any processor

has contact - Nneigh � maximum number of neighbors of any processor domain. To esti-

mate these quantities we take advantage of the fact that our problems come from physical

domains. The mesh partitioner attempts to minimize edge cuts in the graph - this has

138

the physical analogy of minimizing the surface to volume ratio of the partitions. Optimal

partitions are hexagons for a 2D continuum and rhombic dodecahedrons a 3D continuum.

Thus the \optimal" Nneigh is about 12 in a regular 3D mesh. Note that for 3D partitioning

with cubes Nneigh is 26. We use Nneigh = 22 as this is typical of what we see in practice.

That is, Nneigh = 22 is the maximum number of neighbors for any processor, with about

25; 000 degrees of freedom per processor and about 200 processors. Note that this number

will most likely go down with increased dof per processor and better mesh partitioners, and

up with more processors as statistical e�ects of nonuniform partitioning come into play.

Now we estimate the number of ghost vertices (o� processor vertices which are

connected to a local vertex) for each processor (e.g., the number of entries of x that we

need, from other processors, to compute the local entries in y Ax in a matrix vector

product). Likewise, we need the number of local \boundary" vertices whose values must

be sent to other processors. We can again use the physical properties of our graphs by

assuming that a processor's subdomain is a sphere with radius rp, and each vertex \�lls" a

unit volume. With jVpj processor vertices we have jVpj = 4
3
� � � r3p. By assuming that the

thickness of the boundary layer of vertices is 1, the interior vertices V I
p have a radius rp�1,

thus
���V I

p

��� = 4
3 � � � (rp � 1)3. After truncation of higher order terms we have

���V I
p

���
jVpj

� 1� 3

rp

since we have

rp �
�
3 jVpj
4�

�1

3

we get ���V I
p

���
jVpj

� 1� 3�
3jVpj
4�

� 1

3

(8.2)

Our numerical experiments use about 15; 000 to 25; 000 dof per processor (about 5; 000

to 8; 000 vertices per processor) on the �ne grid. Substituting these partition sizes into

equation (8.2) gives us about 70� 75% interior vertices, which is line with the values that

we measure in our numerical experiments. To get an expression for the number of ghost

vertices, we assume that the ghost layer is one unit thick, so that
���V G
p

��� = (rp + 1)3 � r3p,

and after dropping low order terms, we get

���V G
p

��� � 5 � jVpj
2

3 + 8 � jVpj
1

3

139

and similarly as
���V B

p

��� = r3p � (rp � 1)3

���V B
p

��� � 5 � jVpj
2

3 � 8 � jVpj
1

3

An alternative model is to assume that the subdomains are cubes, we can now us an

explicit discrete graph with a regular grid of hexahedra, by assuming that each subdomain

has Np vertices on the side of its cube. The number of vertices per subdomain as jVpj = N3
p .

Further we can model the number of interior vertices (vertices with no contact with other

processors as ���V I
p

��� = (Np � 2)3; Np > 1

and boundary vertices ���V B
p

��� � 6 � jVpj
2

3 � 12 � jVpj
1

3

and the number of ghost vertices

���V G
p

��� � 6 � jVpj
2

3 + 12 � jVpj
1

3

which is largely similar to the model based on spheres. Again for � 5; 000 to 8; 000 vertices

per processor problems we get about 70� 75% interior vertices.

8.5.3 Floating point costs

This section lists the oating point counts for the components in multigrid - these

estimates assume that we are using eight node hexahedral trilinear elements [86]. We assume

that our subdomains (for the block Jacobi preconditioner) are 4� 4� 4 node cubes, which

gives blocks with 192 equations. Further we are oriented toward thick body problems, as

this is the type of problem that we use for our linear scalability studies, in chapter 9.

We need a op rate to estimate the costs of oating point operations: Mop/sec

= 106� ops / sec. Mop/sec is a machine dependent parameter, and even on any one

machine we subdivide Mop/sec into several types. Below are �ve types of flop rates, with

the Mop/sec rate of the appropriate on a T3E and IBM PowerPC in Table 8.5.3, on a

typical problem (i.e., about 20,000 unknowns on one processor).

� Mflop1=sec: Dot products AXPYs, any norm, etc.

� Mflop2=sec: Sparse matrix vector products and solves, with a ndf � ndf matrix of

double precision scalars per block matrix entry

140

� Mflop2a=sec: Sparse matrix vector products, 1 scalar per block matrix entry

� Mflop3=sec: Sparse direct matrix factorization

� Mflop3a=sec: Sparse matrix-matrix-matrix products

T3E (625 Mop/sec peak) IBM PowerPC (258 Mop/sec peak)

Mflop1=sec 85 22

Mflop2=sec 95 37

Mflop2a=sec 19 15

Mflop3=sec 193 173

Mflop3a=sec 12 14

Table 8.3: MFlop rates for MFlop types in multigrid)

Floating point counts are estimated in some cases by measuring the op counts of

representative problems, otherwise they are models for typical hexahedral meshes. Figure

8.5 shows the oating point counts that we use in our analysis, (�) refers to values that are
measured from numerical experiments, and (=) are modeled values.

F (Mvec0) = 2 � 80 � �n0 = 160 � ni - Mflop2

F (Mveci) � Mvec0
5i

F (Restricti) = 2 � 4 � ni - Mflop2a

F (V ecDoti) = 2 � ni - Mflop1

F (V ecNormi) = 2 � ni - Mflop1

F (Axpyi) = 2 � ni - Mflop1

F (TriProdi) � 5 �Mveci � 1000 � ni - Mflop3a

F (F j
i) � 30; 000 - Mflop3

F (Sji) � 18; 000 - Mflop2

F (FL�1) � 7Mflop - Mflop3

F (SL�1) � 0:4Mflop - Mflop2

Figure 8.5: Floating point counts for multigrid operators - op-rate type

141

8.5.4 Communication costs

Communication costs are di�cult to model e�ectively; their di�culty will require

that we use the LogP complexity models (overhead (o) and latency L) described at the

beginning of this chapter. As with the op rate above, there are di�erent overhead o types

for di�erent operations; we include the time to \pack" messages, in the application layer,

in overhead. Overhead is subdivided into �, the overhead for each processor with which

we communicate, and � the overhead for each word (double) being communicated; i.e., the

cost to send n words is �+ n � �. We de�ne three types of �

� �1: Dot products, the true machine/system software below the application: 2 � (o+L)

for the reduction to compute the answer and a broadcast to disseminate it.

� �2: Vector \scatter/gather" in sparse matrix vector products: posting receives and

other per send or receive overhead.

� �3: Matrix operations in the matrix construction: like �2 setting up for each send

and receive.

In general, Nneigh is multiplied by � to get time due to latency in matrix-vector products.

Note we do not include the initial setup phase for the data structures in �2 and �3 (i.e.,

allocating bu�ers, communicating maps between local and non-local vertices for the send

and receives, etc.).

For completeness we describe � in the same way as �. Dot product communication

bandwidth has no dependence on numbers of vertices (we assume that all active processors

on a level i have at least one vertex by de�nition), so we need only de�ne �2 and �3. �2

could be a function of ndf and V G
p the number of ghost vertices, where ndf is the number of

scalars associated with each vertex in a vector. �3 could be a function of x, ndf2, and V G
p ,

where an average of x matrix entries are in a row associated with an o�-processor vertex

that must be communicated. We will estimates these parameters with experimental data,

and as we only test ndf = 3 problems, we assume �2 is a linear function of ndf and �3 is a

quadratic function of ndf (we could include ndf , as we do in x8.5.5 for V G
p , to get a more

accurate complexity).

Matrix vector products (�2) use indirect indexing into a dense vector, to copy

(\gather") values to bu�er for sending to a neighbor processor; this process is reversed on

the receiving side as processors unpack a message and \scatter" it into a sparse vector.

142

Matrix triple products calculate some o� processors values and could accumulate them

into a local sparse matrix; �3 costs occur after the oating point work is complete, each

processor will copy their o� processor data into messages for sending, and will then receive

corresponding messages and accumulate this data into their local sparse matrix. We will not

measure �3 or �3, as these values are inherently very implementation and data structure

dependent, and they are not as large a cost in the solve as the �2 or �2. We use �3

and �3 here, to derive an order of the complexity for matrix vector products; we provide

quantitative measures for �2 and �2 in x8.5.5.
In constructing our complexity model we use the subdomain-as-cube model of

x8.5.2 to give, on grid i with ndf dof per vertex

C(Mveci) � Nneigh � �2 + ndf � �2
�
6 � jVpj

2

3 + 12 � jVpj
1

3

�
(8.3)

Note we ignore latency L as we can overlap communication and computation e�ectively, at

least on the �ner grids (see x8.5.5 for details). Additionally we have

C(V ecDoti) = 2 � dlog2(Pi)e � (o+ L)

using the raw machine overhead o and latency L, and

C(V ecNormi) = C(V ecDoti)

C(Axpyi) = 0 (8.4)

The number of o�-processor ghost vertices, for the restriction operatorC(Restricti),

(for which we require values for the left hand side vector) is about the same as that for the

matrix-vector product. Again as we have ndf dof per vertex and 4 coarse grid vertices, in

general, connected to each �ne grid vertex through the restriction operator.

C(Restricti) � Nneigh � �2 + ndf � �2 (4 � Vp) (8.5)

For C(TriProdi) assume that a processor adds values into all graph edges (o�-

diagonal matrix entries) to/from their ghost vertices, and self edges (diagonal entries) on

those vertices. Additionally a processor can potentially add values to the o�-processor

edges between two ghost vertices. With this we can estimate the number of o� processor

matrix entries that a processor sends as the number of ghost vertices (diagonal entries),

143

and edges \between" processors (i.e.,
���(v; w) 2 ES j v 2 Vp

��� in x5.2.1), and the number of

edges between ghost vertices. To simplify C(TriProdi) we assume that all ghost vertices of

processor p on grid i have about half (15 �
�
8
5

�i
) of their matrix row entries touched by the

processor p, thus

C(TriProdi) � Nneigh � �3 + ndf2 � �3 � 15 �
�
8

5

�i
�
���V G

p

��� (8.6)

���V G
p

��� = 6 � jVpj
2

3 + 12 � jVpj
1

3

This expression is in line with our observations on problem P1 (chapter 9).

8.5.5 Total cost of components

For most of the components in our multigrid model we can simply add the com-

munication time to the oating point time as there is either no opportunity for overlapping

communication and computation, or we (or PETSc) have not implemented it.

The only computational component that requires that we articulate the model

further isMvec, discussed below. The rest of the multigrid components are simply modeled

as the sum of their computation and communication times shown in Figure 8.6.

T (Restricti) = Nneigh � �2 + ndf � �2
���V G

p

���+ 2�4
Mflop2a=sec

� n0
8i�Pi

T (V ecDoti) = �1 � dlog(Pi)e+ 2
Mflop1=sec

� n0
8i�Pi

T (V ecNormi) = �1 � dlog(Pi)e+ 2
Mflop1=sec

� n0
8i�Pi

T (Axpyi) =
2

Mflop1=sec
� n0
8i�Pi

T (TriProdi) � Nneigh � �3 + ndf2 � �3 � 15 �
���V G

p

���+ 800
Mflop3a=sec

� n0
8i�Pi

T (F
j
i) � 0:003

Mflop3=sec

T (Sji) � 0:0018
Mflop2=sec

T (FL�1) � 7
Mflop3=sec

T (SL�1) � 0:4
Mflop2=sec���V G

p

��� = 6 �
��� n0
8i�Pi

��� 23 + 12 �
��� n0
8i�Pi

��� 13

Figure 8.6: Costs for multigrid operators

144

Matrix vector product cost

To form the total cost of matrix-vector products we look at the matrix data struc-

ture in more detail; this is because matrix vector products are responsible for most of the

time in a multigrid solve and the communication and computation patterns of our matrix

vector products are not obvious and allow for some overlap of communication and compu-

tation. PETSc implements its parallel matrix class with two serial sparse matrices on each

processor, plus a small amount of global data. The local \short fat" submatrix (block of

global rows partitioned to processor p) is column partitioned into the diagonal block (Ap)

of the global matrix, and the rest, or o� diagonal, local part (Bp). The advantage of this

scheme is that Ap only works on the local parts of the source and destination vectors (x and

b, respectively), and can thus be done without any communication. The PETSc method of

performing b Ax on processor i, is as follows (note, matrix subscripts refer to processor

submatrices and not grids)

� post receives for necessary parts (ghost values) of xj j j 6= i (actual receives in the

fourth step)

� send necessary parts of xi to all processors j that \touch" i (corresponding send of

receives in the fourth step)

� bi Ai � xi (work on local data)

� receive all o�-processor entries in xj

� bi bi +Bi � xj

With this we can state a cost model for matrix vector products

T (Mveci) = 2 �
�
Nneigh � �2 + ndf � �2 �

���V G
p

����+

ndf2 �
�
8

5

�i
�

�
9 �
���V B

p

����
Mflop2=sec

+ ndf2 �
�
8

5

�i
�

�
27 �

���V I
p

���+ 18 �
���V B

p

����
Mflop2=sec

���V G
p

��� = 6 �
���� n0

8i � Pi

����
2

3

+ 12 �
���� n0

8i � Pi

����
1

3

���V B
p

��� = 6 �
���� n0

8i � Pi

����
2

3

� 12 �
���� n0

8i � Pi

����
1

3

145

Here we assume that there is enough work in the bi Ai � xi term of the matrix vector

product to \hide" the latency in the communication; this will not be the case in general,

especially on the coarsest grids.

We can measure the maximum time that any processor spends in each of these

phases, with varying numbers of processors to estimate the value of �2 and �2; table 8.5.5

shows these maximum times for a problem (P1 described in chapter 9) with about 25,000

equations per processor on the Cray T3E at NERSC.

Fine grid matrix vector product data, with 25,000 equations per processor

processors (# dof x1000) 2 (40) 64 (1,343) 256 (6,489)

Max. send time (max/min) tmax
send 0.00065 (1.6) 0.0033 (3.6) 0.0038 (2.9)

Max. diag. block mat-vec time (max/min) 0.0318 (1.0) 0.0341 (1.1) 0.041 (1.1)

Mop/sec per proc. diag. block mat-vec 96 90 87

Max. receive time (max/min) 0.00035 (2.4) 0.0013 (2.9) 0.0018 (4.5)

Max. o�-diag. block mat-vec time (max/min) 0.0018 (1.1) 0.0048 (1.9) 0.0054 (2.0)

Mop/sec per proc. o�-diag. block mat-vec 60 57 61

Max. neighbor processors Nneigh 1 18 20

Ave. number ghosts in each neighbor proc. ng 583 180 183

Table 8.4: Matrix vector product phase times

Note, this data is from the standard \summary" output in PETSc, although we

added ten lines of code to PETSc's matrix vector product routine (to start and stop timers

for each of the �ve phases).

To use this data to estimate �2 and �2, we �rst notice that our model predicts

that the send and receive phases should be equal - this is not the case. The sends are

non-blocking, and the receives can potentially block, but for the �ne grid this is not likely

as there is much work (the local diagonal block matrix vector product) to hide the latency

in the sends. We use the send times for this demonstration.

For a model of the slowest processors communication time, we will use the maxi-

mum time and the maximum number of neighbor processors (although we do not know if

a processor with the largest number of neighbor processors was in fact the processor with

the largest time, but it natural to assume so). We will also assume that all of the messages

are of the same length, as the average length of messages is the only data that is available,

and use this to calculate the average number of ghost vertices in each message ng. We can

now use this data from the three samples to give us three equations in two unknowns of the

146

form Nneigh � �2 +Nneigh � ng � ndf � �2 = tmax
send .

2
664
1 583

18 18 � 180
20 20 � 183

3
775
"
�2

�2

#
=

2
664
0:00035

0:0013

0:0018

3
775

The least squares �t for this data gives us �2 = �0:000025 and �2 = 0:0000012.

Clearly, n � � >> �, so we can neglect the � term (on the �ne grid) and calculate �2 with

least squares �t: �2 = 0:00000103. Figure 8.7 shows a comparison of this model with the

data.

500 1000 1500 2000 2500 3000 3500 4000
0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

se
co

nd
s

pe
r

se
nd

 p
ha

se
 o

f m
at

rix
 v

ec
to

r
pr

od
uc

ts

approximate number of "ghosts"

model vs. experiment of send time in matrix vector product

measured send times
β

2
 * approximate number of "ghosts"

Figure 8.7: Comparison of model with experimental data for send phase of matrix vector

product on �ne grid

Thus we have an approximate measure of �2 = 0 and �2 = 1:03�sec on a 440

MHz. Cray T3E, with 3 dof per vertex, and hexahedra mesh of a thick body problem. The

next step would be to articulate �2 to include a term for the average number of vertices per

processor to allow for the modeling of the coarse grids - though we conclude the development

of this model here.

147

This exercise is an example of the analyses that would have to be carried out for

�1, �3, and �3, for a machine and a problem class, to construct an initial complexity model

of multigrid. We do not pursue this model further in this dissertation, but the next section

concludes with a sketch of the path for pursuing this model.

8.6 Conclusion and future work in multigrid complexity

modeling

This chapter has provided an introduction to the complexity issues of large scale

unstructured multigrid solvers on the common parallel architecture and machines of todays.

We have developed some of the infrastructure for our complexity model and have articulated

some of the components of this model. We however, have not completed this model.

To complete this model one would �rst need to complete the expressions for �2

and �2, developed in the last section, for coarse grid matrices (i.e., extend the model, of �2

and �2, as a function of the number of equations per processor and of machine latency); one

could then construct models for �1, �3 and �3. These expressions could then be substituted

into the component models presented in this chapter; these component models could then

be substituted into an inventory (shown in Figure 8.8) of the applications of each component

in the solver. The resulting cost estimate could then be compared to experimental data and

re�ned as necessary to develop an accurate model.

After re�ning this model for thick body hexahedra meshes, one could extend the

model to accommodate other types of problem classes (e.g., using thin body problems like

shells), by changing some of the appropriate parameters, such as grid reduction rates (in

x8.5.2). One would then continue to iteratively re�ne the model and perturb the problems

to develop a more comprehensive accurate model of multigrid solvers on unstructured �nite

element meshes. Some of the payo�s in the modeling that we have introduced in this

chapter would be (as stated in x8.2) to aid algorithmic design, design better computers,

inform purchasing decisions, and verify optimal or correct code installations.

148

1 : Setup Multigrid preconditioner:

� 1: TriProdi, 8i = 1; 2; 3; � � � ; L� 1

� 1: FL�1 - - factor coarsest grid

� 8i = 0; 1; 2; 3; � � � ; L� 2 8j = 1; 2; 3; � � � ; bi: F j
i - - factor block diagonal matrix for

block Jacobi:

k: Conjugate Gradient iterations, with a Multigrid preconditioner:

� 1: Mvec0

� 2: V ecDot0

� 3: Axpy0

� 1: Norm0

� 1: Application of MultiGrid Fcycle(A0; b):

{ L: SL�1 - - solves on coarsest grid

{ 1: Restricti 8i = 0; 1; 2; 3; � � � ; L� 1

{ 1: Mveci 8i = 0; 1; 2; 3; � � � ; L� 1

{ 1: Axpyi 8i = 0; 1; 2; 3; � � � ; L� 1

{ 1: Applications of MultiGrid V cycle(Ai; b) 8i = 0; 1; 2; 3; � � � ; L� 2:

� 2 � (i+ 1): Mveci

� 2 � (i+ 1): Restricti=Interpolatei

� 3 � (i+ 1): Axpyi

� s � (i+ 1): Applications of Smooth(Ai; b):

� 1: Mveci

� 2: V ecDot0
� 3: Axpyi
� 8j = 1; 2; 3; � � � ; bi: Sji - - Jacobi PC

Figure 8.8: Cost Inventory of CG with Full Multigrid Preconditioner

149

Chapter 9

Linear scalability studies

This chapter presents scalability studies of our solver on an IBM PowerPC cluster

with 128 4-way SMPs and a Cray T3E with 512 processors, with problems up to 7.5 million

degrees of freedom. We show comparative results on two di�erent platforms, and look into

some general and detailed solver performance issues.

9.1 Introduction

This chapter proceeds as follows, notation and solver con�guration are introduced

in x9.2. We introduce our linear test problem in x9.3, and present scalability studies of

our solver on a Cray T3E x9.4 and an IBM PowerPC cluster x9.5. x9.6 shows numerical

experiments for our grid agglomeration strategies and analysis of the time spent in each

grid of a sample problem. We present \end to end" performance data in x9.7, to provide a
view of the performance of our entire parallel �nite element package.

Our overall results show that our algorithm is indeed scalable on problems up to

7.5 million degrees of freedom on 512 processors of a Cray T3E with about 50% solver

parallel e�ciency, and on 128 4-way SMPs nodes of an IBM PowerPC cluster with about

20% solver parallel e�ciency.

9.2 Solver con�guration and problem de�nitions

We denote a problem x by Pxk , k being the number of thousands of dof that we

put on each processor. A problem is a geometry, or domain, with boundary conditions, and

150

a �nite element discretization (or element formulation), material properties, etc., for each

subdomain - but does not include a mesh of the domain. For instance our �rst problem

the \included sphere" (x5.2.5, x5.3.7, x6.4, x6.5, and x9.3), with a mesh and number of

processors that results in about 25,000 dof per processor is referred to as P125.

Our solver uses a block Jacobi preconditioner for a CG smoother for our (full)

multigrid preconditioner of a CG solver. Two pre and post smoothing steps are used

throughout our numerical experiments, and we use a convergence tolerance of 10�6 (i.e.,

declare convergence of solution x̂ when
kAx̂�bk
kbk < 10�6) - unless otherwise stated.

9.3 Problem P1

Figure 9.1 shows one mesh (13,882 vertices), of a �nite element model of a hard

sphere (Poisson ratio of 0:3) included in a soft somewhat incompressible material (Poisson

ratio of 0:49). P1 is made of eight vertex hexahedral trilinear \brick" elements and is

almost logically regular. All materials are linear, with mixed displacement and pressure

elements (Q1P0) [86]. A uniform pressure load is applied on the top surface. One octant

is modeled with symmetric (\roller") boundary conditions on the \cut" surfaces, all other

surfaces have homogeneous Neumann boundary conditions. The other meshes that we test

are of the same physical model but with di�erent scales of discretization.

Figure 9.1: 13,882 Vertex 3D FE mesh and deformed shape

151

9.4 Scalability studies on a Cray T3E - P115

Figure 9.2 shows the times for the primary components (in Figure 8.2) of one linear

�nite element solution, after the (per con�guration) set up phase, for a variety of problems

from 15,000 dof to 7.5 million dof with 1 to 512 processors, run on a Cray T3E. The Cray

T3E has 512 450 MHz single processor nodes, with 900 Mop/sec theoretical peak, and

256 Mb memory per processor. For each instantiation of the problem we have chosen the

number of processors so as to keep about 15,000 dof per processor, and to be a multiple of

four (to be consistent with the IBM data in the next section).

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Number of processors

T
im

e(
p)

Inclusion.Sphere Solve Times (~15K per processor) Cray t3e

number of iterations

Fine grid creation (FEAP)

R * A * P (Epimetheus)

Subdomain factorizations (PETSc)

Solve for "x" (PETSc)

Total

Iterations,tol=10−6

Figure 9.2: 15,000 dof per processor, included sphere times, on a 512 PE Cray T3E

From this data we can make a few observations about the performance charac-

teristics of our solver. First and foremost we see an overall trend of our solver requiring a

constant number of iterations (the �rst solve required 31 iterations and the last required

30). This means that multigrid converges as quickly as expected. The enthusiasm for the

success of this algorithm is tempered by seemingly random and indeterminate increases

of the iteration count, particularly on the smaller problems (in this data, the 35 di�erent

solves have iteration counts between 30 and 46). This is a shortcoming of the current algo-

152

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of processors

T
im

e(
1)

 /
T

im
e(

p)
 *

 N
(p

)
/ (

N
(1

)
*

p)

Inclusion.Sphere Solve Speedup (~15K per processor) Cray t3e

N(p) / (N(1) * p)

Fine grid creation (FEAP)

R * A * P (Epimetheus)

Subdomain factorizations (PETSc)

Solve for "x" (PETSc)

Total

N(p) / (N(3) * p)

Figure 9.3: 15,000 dof per processor, included sphere e�ciency, on a Cray T3E

rithm - although we have found (since this data was collected) that this variability can be

signi�cantly damped by restarting CG every 20 or 30 iterations.

We see two possible sources of these uctuations in iteration counts: the non-global

coarse grids meshes (x5.4) lead to restriction operators that are not computed with one valid
global �nite element mesh, and the \random" selection of facets in our face identi�cation

algorithm (x5.3.3) is probably not optimal. These issues require a parallel Delaunay mesh

generator [12], and that we use a more rational selection of initial facets with some global

view of the problems - the design of such an algorithm that is both e�ective and has

acceptable parallel characteristics is a subject of future research.

Figure 9.3 shows the e�ciency of the data in Figure 9.2; we have also plotted the

factor
N(p)

N(1)�p by which we multiply the data, to account for the fact that these problems

come in �xed sizes which are not in general an integer multiple of the smallest (1 processor)

version of the problem. Figures 9.2 and 9.3 show that the formation of the �ne grid sti�ness

matrix (\Fine grid [sti�ness matrix] creation") is scaling well - this is to be expected as

no communication is required and the only sources of ine�ciency are load imbalance, and

the redundant work done on elements that straddle our vertex partitioning. Thus, our

153

e�ciency (de�ned in x8.4.1) for the �ne grid construction is: communication e�ciency

c = 1:0, scale e�ciency z � 1:0, and work e�ciency w � 0:8 and is the ratio of the number

of elements in the problem divided by the number of processors, to the maximum number

of element evaluations on any one processor. Load balance l, for the element evaluations is

not explicitly enforced with our partitioner, though they are inherently well balanced as all

elements do the same amount of work (in this linear example), and the element load balance

is reasonably good as the number of elements on a processor is closely related to the number

of non-zeros on the processor (which is explicitly optimized by the partitioner). Also, on

large problems ParMetis has a tendency to put multiple disconnected small subdomains on

a few processors, resulting in good load balance in the matrix vector products, but large

\surface areas" on these few processors - these processors evaluate more than the average

number of elements per processor leading to larger load imbalance in the �ne grid matrix

creation.

We can also see that the coarse grid creation (the matrix triple product, RAP)

is scaling reasonably well, and is a small part of the overall solve time. The matrix triple

product times in Figure 9.2 are hindered by what seems to be non-optimal matrix assembly

implementation in PETSc. We have implemented our own assembly \wrappers" for the

PETSc assemble routines that use hash tables to cache the accumulation of matrix entries

until the oating point work is done in the matrix triple product. We then add our cached

values to the PETSc matrix, with the PETSc assemble routines, once for each matrix entry

per processor. This optimization is necessary for the o�-processor matrix entries as PETSc

does not implement this well, but even for the on-processor entries, using our assembly

wrapper has more than doubled the performance of the matrix triple product on the IBM

(the increase on the Cray T3E is not as dramatic).

To understand the parallel e�ciency of the actual solve we remove the scale o

e�ciency noise (number of iterations) from this data to ascertain trends in the solver per-

formance (Mop rate). Figure 9.4 shows two di�erent decompositions of the solve (time

to solve for \x") parallel e�ciency, using op rate and op count, utilizing our e�ciency

models, from x8.4.1, to visualize the contributing components. Note, the lower curve of

each of these plots represents the e�ciency of the solve with a �xed number of iterations.

Also the small di�erence between the \average op/iteration" and the horizontal line at

e�ciency = 1:0 (the horizontal axis), in the left plot of Figure 9.4, is the small amount of

sub-linear (below the axis) op e�ciency in this set of experiments. See x10.4 for a more

154

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of processors

f(
1)

 /
f(

p)
 *

 N
(p

)
/ (

N
(1

)
*

p)
Inclusion.Sphere flop/iteration/proc Efficiency (~15K per processor) Cray t3e

communication

load imbalance

max flop/iteration
ave flop/iteration
time per iteration

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of processors

m
flo

p/
se

c(
pe

)
/ m

flo
p/

se
c(

1)

Inclusion.Sphere flop/sec Efficiency (~15K per processor) Cray t3e

communication

load imbalance

max flop/sec
ave flop/sec

Figure 9.4: 15,000 dof per processor, included sphere, e�ciency on a Cray T3E

detailed discussion of the e�ciency plots such as those in Figure 9.4. From this data we

can see that the parallel e�ciency of the T3E is almost 50% for the solve.

The serial e�ciency of this code can be calculated by dividing the Mop rate for

the entire solve and matrix setup (submatrix factorizations and matrix triple products), by

the serial peak op rate. The Serial Mop rate for the 15,000 dof problem is 61 Mop/sec,

and the peak op rate (appendix B) is 662 Mop/sec to giving a serial e�ciency s = 0:10.

9.5 Scalability studies on an IBM PowerPC cluster - P130

Performance is a machine dependent quantity, thus we look at this same study, as

the last section, on a di�erent machine. Note, to be consistent with P115 on the Cray, we

put 60 k dof per 4-way SMP node on the IMB; we, however, use only two processors per

node as this gives us better performance on the largest problems (the ones of interest) -

resulting in P130. Figures 9.5,9.6,9.7 show the same experiments, as in the previous section,

run on an IBM PowerPC cluster at LLNL. Each node has four 332 MHz PowerPC 604e

processors, with 512 Mb of memory per node, and a peak Mop rate of 258 Mop/sec

(appendix B). We only use two processors per node and run in a at MPI programming

model (thus we are not explicitly taking advantage of the shared address space on each

node).

This data shows that the e�ciency of the solve is not scaling well as we are only

155

50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Number of processors

T
im

e(
pe

)

Inclusion.Sphere Solve Times (~30K per processor) IBM ppc, 2 proc. per node

number of iterations

Fine grid creation (FEAP)
R * A * P (Epimetheus)
Subdomain factorizations (PETSc)
Solve for "x" (PETSc)
Total
Iterations,tol=10−6

Figure 9.5: 30,000 dof per processor, 2 active processors per node, included sphere times,

on a IBM PowerPC cluster

running a bit above 20% e�ciency (Figure 9.6) for the largest problem. The subdomain

factorizations is running very poorly in some cases - this is most likely due to paging caused

by some non-scalable constructs in PETSc, which means we should have run these problems

with fewer equations per node (however we wanted to remain consistent with the Cray data

on this problem).

To understand the parallel e�ciency of the actual solve we remove the scale o

e�ciency noise (number of iterations) from this data to ascertain trends in the solver per-

formance (Mop rate). Figure 9.7 shows two di�erent decompositions of the solve (time

to solve for \x") parallel e�ciency, using op rate and op count, utilizing our e�ciency

models to visualize the contributing components from x8.4.1. See x10.4 for a more detailed
discussion of the e�ciency plots such as those in Figure 9.7.

The serial e�ciency of this code can be calculated by dividing the Mop rate for

the entire solve and matrix setup (submatrix factorizations and matrix triple products).

The Serial Mop rate for the 15,000 dof problem is 30 Mop/sec, peak op rate (appendix

B) is 258 Mop/sec, to give a serial e�ciency s = 0:12.

156

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of processors

T
im

e(
1)

 /
T

im
e(

p)
 *

 N
(p

)
/ (

N
(1

)
*

p)

Inclusion.Sphere Solve Speedup (~30K per processor) IBM ppc, 2 proc. per node

N(p)/(N(1) * p)

Fine grid creation (FEAP)
R * A * P (Epimetheus)
Subdomain factorizations (PETSc)
Solve for "x" (PETSc)
Total
N(p) / (N(3) * p)

Figure 9.6: 30,000 dof per processor, 2 processors per node, included sphere e�ciency, on a

IBM PowerPC cluster

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of processors

f(
1)

 /
f(

p)
 *

 N
(p

)
/ (

N
(1

)
*

p)

Inclusion.Sphere flop/iteration/proc Efficiency (~30K per processor) IBM ppc, 2 proc. per node

communication
load imbalance

max flop/iteration
ave flop/iteration
time per iteration

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of processors

m
flo

p/
se

c(
pe

)
/ m

flo
p/

se
c(

1)

Inclusion.Sphere flop/sec Efficiency (~30K per processor) IBM ppc, 2 proc. per node

communication

load imbalance

max flop/sec
ave flop/sec

Figure 9.7: 30,000 dof per processor, 2 processors per node, included sphere, e�ciency on

a IBM PowerPC cluster

157

9.6 Agglomeration and level performance

This section looks into two related areas, time spent on each multigrid level and

the e�ect of processor agglomeration described in x7.4.

9.6.1 Agglomeration

We use the IBM PowerPC cluster of this experiment as the utility of agglomer-

ation techniques are most pronounced on this machine. We use P115 on 60 nodes (using

all 4 processors per node), with and without processor agglomeration. Table 9.6.1 shows

approximate op rates for dot products, and the total op rate for the actual solve (i.e. the

iterations).

Total Mop per sec. (MFs) for solve

3,594 k dof With agglomeration Without agglomeration

Included Sphere 1509 249

grid � equations np dot MFs np dot MFs

1 3,594 k 240 � 35 240 � 42

2 314k 120 � 11 240 � 3

3 45k 30 � 8 240 � 0

4 6k 10 � 2 240 � 0

5 600 1 NA 1 NA

Table 9.1: Flat and \graded" processor groups, IBM PowerPC cluster

This data shows that, for this machine, dramatic savings can be achieved with

processor group agglomeration.

9.6.2 Performance on di�erent multigrid levels

We provide an approximate measurement of the time spent on each level, for a

particular problem on the Cray T3E. We use the 9,594,879 dof version of problem P2, that

is similar to P1, introduced in chapter 10. Table 9.6.2 shows the time spent on each grid,

in the accelerator, and the total time for the actual solve - after the preconditioners have

be factored and the coarse grids created. Note, we are only able to measure the total solve

time accurately - given the PETSc output. We thus approximate the time on each grid

by adding the maximum time spent in the matrix-vector product and subdomain solves (of

the block Jacobi preconditioner), and the minimum time spent in the dot products (as the

158

dot products accumulate the load imbalance accounted for in the previous terms). We then

throw out the time on the grid that we have the least con�dence in (grid 4) and assign it

the time required to add up to our (reliable) total solve time.

level vertices active processors � time (sec)

Krylov accelerator 3,227,206 512 1.1

1 3,227,206 512 7.68

2 262,909 512 3.62

3 35,286 512 2.86

4 5,309 64 4.04

5 543 8 1.59

6 46 1 0.21

Total solve time 21.1 21.1

Table 9.2: Time for each grid on Cray T3E, 9.6 million dof problem

Note, this data may indicate that fourth grid is not using an optimal number of

processors, though we are not able to improve the overall solve time (the quantity that we

can measure accurately) by varying the number of processors, so the source of the apparent

ine�ciency in this grid is not clear.

9.7 End to end performance

This section shows the total \end to end" performance of our parallel �nite element

implementation with our solver to do just one solve - from beginning to end. We measure the

high level components of the total parallel �nite element system, as diagramed in Figure 8.2.

Note, we do not measure time for FEAP to setup the local data structures for the �ne grid,

after the partitioning but before the construction of the restriction operators (Prometheus),

as this is not optimal now (we do not use memory resident �les) but it is small (about 20

seconds on the T3E).

159

9.7.1 Cray T3E

Figures 9.8 and 9.9 show the times for major components in the solution of one

solve on the Cray T3E at NERSC.

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

Number of processors

T
im

e(
p)

Inclusion.Sphere "end to end" Times (~15K per processor) Cray t3e

Partitioning (Athena)

Restriction construction (Prometheus)

Fine grid creation (FEAP)

Solve setup (Epimetheus,PETSc)

Solve for "x"

Total

Figure 9.8: 15,000 dof per processor \end to end" times on a Cray T3E

From this data we can see that the parallel �nite element codes setup phase and

partitioning (Athena), costs about ten times the cost of one solve (of P1 solved to a relative

residual tolerance of 10�6). Also the restriction operator construction (Prometheus), i.e.

coarse grid construction, shape function evaluation, and restriction matrix construction,

costs at most twice as much as a solve. The time for the restriction operator construction is

hindered by a few PETSc ine�ciencies, namely the the assembly routines are probably not

optimal (x9.4) and so assembling the restriction operator could probably be improved. The

restriction construction is also hindered by ine�cient submatrix extraction and symbolic

factorization in the additive Schwarz preconditioners. Thus the restriction construction

phase probably has opportunity to be further optimized by optimizing some of the general

sparse matrix operations in PETSc; though these costs are \per con�guration" cost and

thus are amortized in nonlinear and transient analyses.

160

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of processors

T
im

e(
1)

 /
T

im
e(

p)
 *

 N
(p

)
/ (

N
(1

)
*

p)

Inclusion.Sphere Prometheus and Solve Speedup (~15K per processor) Cray t3e

mflops(pe) per sec / mflops(1) per sec * p

Restriction construction (Prometheus)

Fine grid creation (FEAP)

Solve setup (Epimetheus,PETSc)

Solve for "x" (PETSc)

Total

Solve Mflops/sec

Figure 9.9: 15,000 dof per processor \end to end" times on a Cray T3E

Also the FEAP construction and Epimetheus assembly of the �ne grid sti�ness

matrix is very small relative the solve cost. The solve setup costs includes the Jacobi block

factorizations, but is predominately the matrix triple product for the coarse grid operator

construction - this cost is about one �fth that of the actual solve (solve for \x"). Finally

\End to End" the sum of all of the components. Additionally Figure 9.9 shows the e�ciency

of the Mop rate in the solve, which is about 50%.

9.7.2 IBM PowerPC cluster

This section shows the same data as the last section for the IBM PowerPC cluster

at LLNL. It is interesting to note that the �nite element setup (Athena) is faster on the IBM

- though this is somewhat misleading. Each node on the IBM has a local disk, the Cray

processors do not have a local disk, so that writing the local FEAP input �le, and reading

it in (inside of FEAP on each processor) is much more expensive on the Cray. Also the

Cray does not support I/O in C very well, requiring that Cray speci�c routines be called for

reading and writing �les; this data may not have had the optimal system I/O parameters

161

set, so the Cray Athena data may not be optimal.

20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

Number of nodes

T
im

e(
pe

)

Inclusion.Sphere "end to end" Times (~60K per node) IBM ppc, 2 proc. per node

Partitioning (Athena)
Restriction construction (Prometheus)
Fine grid creation (FEAP)
Solve setup (Epimetheus,PETSc)
Solve for "x"
Total

Figure 9.10: 60 k dof per node, 2 proc. per node \end to end" times, IBM PowerPC cluster

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of nodes

T
im

e(
1)

 /
T

im
e(

p)
 *

 N
(p

)
/ (

N
(1

)
*

p)

Inclusion.Sphere Prometheus and Solve Speedup (~60K per node) IBM ppc, 2 proc. per node

mflops(pe) per sec / mflops(1) per sec * p

Restriction construction (Prometheus)
Fine grid creation (FEAP)
Solve setup (Epimetheus,PETSc)
Solve for "x" (PETSc)
Total
Solve Mflops/sec

Figure 9.11: 60 k dof per node, 2 proc. per node, solve times, IBM PowerPC cluster

162

9.7.3 Conclusion

Form this data we can see that the initial parallel �nite element setup phase is the

biggest bottleneck for one solve; but as its cost can be amortized for typical problems, and

as it is not the subject of this work, this is not of primary concern. The performance of the

restriction construction (Prometheus) may be somewhat diminished by non-optimal assem-

bly of the restriction operators in PETSc - this is partially due the fact that we repartition

the coarse grids, requiring more communication than if we did not repartition. Also, though

ParMetis minimizes the data movement in repartitioning, it is not clear how e�ective it is

(we are using the second or third alpha release of version 2.0). The restriction construction

phase is also hindered by ine�cient sparse matrix operations (submatrix extraction and

symbolic factorization) in the additive Schwarz preconditioners x9.7. These problems are

again only \per con�guration" costs and have not been investigated throughly. Addition-

ally we can see the very di�erent performance characteristics of the IBM and the Cray, on

unstructured multigrid codes. We attribute this to the poor support of \at" MPI codes

on the IBM.

163

Chapter 10

Large scale nonlinear results, and

inde�nite systems

This chapter discusses the application of our solver to non-linear problems that

arise in computational plasticity and �nite deformation materials, with a study that presents

our largest solve to data - a 16.6 million degree of freedom solve with up to 512 processors

and about 60% parallel communication e�ciency. We also discuss the use of our linear

solver (for symmetric positive de�nite matrices) to constrained problems with Lagrange

multipliers - namely contact problems in linear elasticity.

10.1 Introduction

This chapter proceeds as follows, x10.2 describes the large scale test problem P2,

and the non-linear solution procedure is discuss in x10.3. A scalability study for one linear

solve is presented in 10.4, with problems of up to 16.6 million degrees of freedom, with

about 60% parallel e�ciency on 405 processors of a Cray T3E. The non-linear numerical

results are discussed in x10.5 with problems up to 16.6 million degrees of freedom on 512

processors of a Cray T3E and about 60% parallel e�ciency on 405 processors of a Cray

T3E. We discuss contact problems with serial numerical results in x10.6, and conclude in

x10.7.

164

10.2 Non-linear problem - P2

Problem P2 is similar to P1, from chapter 9, with one important di�erence - the

included sphere has been subdivided into seventeen layers of alternating materials. This

change to P1 has two important e�ects on the character of the problem. First it introduces

\thin body" features which our heuristics (x5.3) are designed to accommodate, and second

these heuristics alters the degree to which vertices are coarsened in the sphere but not in

the rest of the domain - leading to severe load imbalance if one does not repartition.

We again scale this problem, Figure 10.2 shows the smallest (base) version of P2

with 80 k dof. P2 has been discretized by using a similar scale of discretization as P1's

Figure 10.1: 80,000 dof concentric spheres problem

83 k problem, for the base case. Each successive problem has one more layer of elements

through each of the seventeen shell layers, with an appropriate (i.e., similar) re�nement in

the other two directions, and in the outer soft domain - resulting in problems of size: 80

k, 621 k, 2,086 k, 4,924 k, 9,595 k, 16,554 k, and 26,257 k degrees of freedom (the largest

problem has not yet been run).

We use similar materials as those in P1, but with non-linear constitutive models,

and the interior concentric spheres alternate \hard" and \soft" layers with the hard material

in the inner and outer shells. The loading and boundary conditions have been changed from

P1 to an imposed uniform displacement (down), on the top surface.

Table 10.2 shows a summary of the constitution of our two material types.

The hard material is a simple J2 plasticity material with kinematic hardening [75].

165

Material Elastic mod. Poisson ratio deformation type yield stress hardening mod.

soft 10�4 0:49 large 1 NA

hard 1 0:3 small 0:002 0:002

Table 10.1: Non-linear materials

The soft material is a large deformation (Neo-Hookean) hypoelastic material [86].

10.3 Non-linear solver

We use a full Newton non-linear solution method. Convergence is declared when

the energy norm of the correction, in an iteration, is 10�16 that of the �rst correction.

This means in Newton iteration m, we declare convergence when
���xTm � (b� Axm)

��� < 10�16 ����xT0 � (b� Ax0)
���. Our linear solver, within each Newton iteration, is conjugate gradient pre-

conditioned by our multigrid solver, with a block Jacobi preconditioned conjugate gradient

smoother. We use 6 blocks for every 1,000 unknowns in the block Jacobi preconditioner.

FEAP calls our linear solver at each Newton iteration, with the current residual

rm = b � Axm, thus the linear solve is for the (negative) increment �x � A�1rm. We use

a dynamic convergence tolerance (rtol) for the linear solve, in each Newton iteration, of

rtol1 = rtol2 = 10�4 in the �rst and second iteration, and rtolm = min(10�3; krmk
krm�1k � 10

�1)

on all subsequent iterations (m > 2). This heuristic is intended to minimize the number of

total iteration required in the Newton solve in each time step by only solving each linear

solve to the degree that it \deserves" to be solved. That is, if the true (non-linear) residual

is not converging quickly then solving the linear system to an accuracy far in excess of the

reduction in the residual, that is expected in the outer Newton iteration, is not like to be

economical.

The reason for hardwiring the tolerance, for the second Newton iteration, is

that the residual for the �rst iteration of this problem tends to drop by about three or-

ders of magnitude. The second step of this problem tends to have the residual reduced

by about one order of magnitude or less and then continues with super linear, but not

quadratic convergence rate (as we use a non-exact solver). Our dynamic tolerance heuristic

(min(10�3; krmk
krm�1k � 10

�1)) speci�es too small of a tolerance, on the second iteration of this

problem, so we hardwired the tolerance for the sake of e�ciency.

166

10.4 Cray T3E - large scale linear solves

We run one linear solve with about 41,000 degrees of freedom per processor (i.e.

P241) and a convergence tolerance of 10�4 (the �rst linear solve tolerance in the non-linear

solver), so as to investigate the e�ciency of our largest solves to date (16:6 � 106 dof). We

want to show our solver in its best light by running with as many equations per processor

as possible, as parallel e�ciency will in general increase as the number of degrees of freedom

per processor goes up. Thus, this material is intended to illustrate the issues of scale in

isolation of the issue of non-linear performance discussed in the x10.5. Figure 10.2 shows

the times for the major subcomponents of the solver, and Figure 10.3 shows the e�ciency

diagram of the same data.

100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

Number of PEs

T
im

e(
pe

)

Solve Times (~41K dof per PE) Cray T3E

number of iterations

Fine grid creation (FEAP)

R * A * P (Epimetheus)

Subdomain factorizations (Epimetheus)

Solve for "x" (PETSc)

Total

Iterations,tol=10−4

Figure 10.2: 41,000 dof per processor, included concentric sphere times, on a Cray T3E

We see super-linear e�ciency in the solve times, in Figures 10.2 and 10.3, for

two reasons. First, we have super-linear convergence rates, as shown in Figures 10.2. The

decrease in the iteration count in Figure 10.2 shows super-linear scale e�ciency z > 1:0, in

our e�ciency measures from x8.4.1.
Second, the vertices added in each successive scale problem have a higher per-

centage of interior vertices than the base (two processor) problem, leading to higher rates

167

10
1

10
2

0

0.5

1

1.5

Number of PEs

T
im

e(
1)

 /
T

im
e(

pe
)

*
(N

(1
)

*
p)

 /
N

(p
e)

Solve Speedup (~41K dof per PE) Cray T3E

N(pe)/(N(1) * p)

Fine grid creation (FEAP)

R * A * P (Epimetheus)

Subdomain factorizations

Solve for "x" (PETSc)

Total

N(p) / (N(3) * p)

Figure 10.3: 41,000 dof per processor, included concentric sphere e�ciency, on a Cray T3E

of vertex reduction in the coarse grids. This is because, as the number of unknowns n

increases, the \surface area" increases by n
2

3 whereas the interior will increase by n; thus,

the ratio of interior vertices to surface vertices will increase as the scale of discretization

decreases (n increases) on the larger problems. Our heuristics (x5.3.1) try to articulate the
surfaces (boundary and material interfaces) well, resulting in a higher ratio of surface ver-

tices being promoted to the coarse grid. Thus, the rate of vertex reduction is higher on the

larger problems as they have proportionally higher interior vertices, hence proportionally

larger reduction rates leading to less work per processor per �ne grid vertex on the large

problems. For instance, the total reduction factor of the �rst coarse grid is about seven on

the base case (80 k dof problem) and about thirteen on the larger problems. Therefore,

there are in fact fewer ops - per �ne grid vertex - on the coarse grids for the larger problems

as can be seen in Figure 10.4. The work e�ciency w from x8.4.1, shown in the \average

ops per iteration" per processor in Figure 10.4, is super-linear w > 1:0.

Figures 10.2 and 10.3 also show that \subdomain factorizations" perform poorly.

On inspection of the PETSc output we see that the copying of the subdomain data, from

the grid sti�ness matrix, and the symbolic factorizations of these submatrices are the cause

of these large and increasing (with number of processors) times. We are not able to explain

168

this poor performance in this data, though older data shown in Figure 9.2 on problems of

similar scale show much smaller times that are in line with our expectations. Additionally,

there is no need for communication in the subdomain factorization phase, hence the 25%

parallel e�ciency in Figure 10.3 is clearly not endemic to our algorithm or implementation.

10
1

10
2

0

0.5

1

1.5

Number of PEs

f(
1)

 /
f(

pe
)

*
(N

(1
)

*
pe

 /
N

(p
e)

)

flop/iteration/proc Efficiency (~41K dof per PE) Cray T3E

communication

load imbalance

max flop/iteration
ave flop/iteration
time per iteration

Figure 10.4: 41 k dof per processor, concentric sphere, op e�ciency on a Cray T3E

Figure 10.5 shows that we have above 60% parallel e�ciency - in the Mop rate -

up to 405 processors on the Cray T3E, in the solve.

169

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of PEs

m
flo

p/
se

c(
pe

)
/ m

flo
p/

se
c(

1)

flop/sec Efficiency (~41K dof per PE) Cray T3E

communication

load imbalance

max flop/sec
ave flop/sec

Figure 10.5: 41 k dof per processor, concentric sphere, Mop/sec e�ciency on a Cray T3E

1
7
0

1
0
.5

C
ra
y
T
3
E
-
n
o
n
-lin

e
a
r
so
lu
tio

n

F
o
r
th
e
n
o
n
-lin

ea
r
p
ro
b
lem

P
2
3
2
w
e
ru
n
�
v
e
tim

e
step

s
th
a
t
resu

lt
in
a
d
isp

la
cem

en
t

d
ow

n
o
f
3
.6
in
ch
es,

th
e
cu
b
e
is
1
2
.5
in
ch
es

o
n
a
sid

e,
a
n
d
th
e
to
p
\
so
ft"

sectio
n
is
5
in
ch
es

a
t
th
e
cen

tra
l
(z)

a
x
is.

T
h
u
s,
a
s
th
e
h
a
rd

in
terio

r
co
re

d
o
es

n
o
t
d
isp

la
ce

sig
n
i�
ca
n
tly

a
t

3
.6
in

to
p
d
isp

la
cem

en
t
w
e
h
av
e
a
b
o
u
t
7
2
%

co
m
p
ressio

n
o
f
th
e
so
ft
m
a
teria

l
a
t
th
e
in
terio

r

co
rn
er.

T
h
is
p
ercen

ta
g
e
d
ecrea

ses
aw

ay
fro

m
th
e
in
terio

r
co
rn
er

a
s
th
e
d
ep
th

o
f
th
e
so
ft

m
a
teria

l
in
crea

ses
a
s
w
e
m
o
v
e
aw

ay
fro

m
th
e
to
p
o
f
th
e
sp
h
ere.

W
e
k
eep

a
b
o
u
t
3
2
,0
0
0

d
eg
rees

o
f
freed

o
m

p
er

p
ro
cesso

r,
a
n
d
ru
n
p
ro
b
lem

s
o
f
size

8
0
k
(o
n
3
p
ro
cesso

rs)
u
p
to

1
6
,5
5
4
k
(o
n
5
1
2
p
ro
cesso

rs).
F
ig
u
re

1
0
.6
sh
ow

th
e
n
u
m
b
er

o
f
m
u
ltig

rid
itera

tio
n
s,
sta

ck
ed

o
n
o
n
e
a
n
o
th
er

to
sh
ow

th
e
to
ta
l
n
u
m
b
er

o
f
m
u
ltig

rid
itera

tio
n
s
to

so
lv
e
ea
ch

p
ro
b
lem

.

5
5.5

6
6.5

7

0

100

200

300

400

500

600

700

800

log
10 (d o f)

linear solver iterationsF
ig
u
re

1
0
.6
:
M
u
ltig

rid
itera

tio
n
s
p
er

N
ew

to
n
itera

tio
n

F
ro
m

th
is
d
a
ta

w
e
ca
n
see

th
a
t
th
e
to
ta
l
n
u
m
b
er

o
f
itera

tio
n
s
is
sta

y
in
g
a
b
o
u
t

co
n
sta

n
t
a
s
th
e
sca

le
o
f
th
e
p
ro
b
lem

in
crea

ses.
F
ig
u
re

1
0
.3

sh
o
w
s
th
a
t
th
e
n
u
m
b
er

o
f

itera
tio

n
s,
to

red
u
ce

th
e
resid

u
a
l
b
y
a
�
x
ed

a
m
o
u
n
t
in

th
e
�
rst

so
lv
e
o
f
th
e
�
rst

tim
e
step

,

d
ecrea

ses
a
s
th
e
p
ro
b
lem

size
in
crea

ses.
T
h
u
s
th
e
d
a
ta

in
F
ig
u
re

1
0
.6

su
g
g
ests

th
a
t
th
e

n
o
n
lin
ea
r
p
ro
b
lem

is
g
ettin

g
h
a
rd
er

to
so
lv
e
a
s
th
e
d
iscretiza

tio
n
is
re�

n
ed
;
th
is
is
n
o
t
a

su
rp
risin

g
resu

lt
a
s
th
ere

is
lik
ely

m
o
re

n
o
n
lin
ea
r
b
eh
a
v
io
r
in

th
e
�
n
er

d
iscretiza

tio
n
s,
b
u
t

m
o
re

w
o
rk

rem
a
in
s
to

in
v
estig

a
te

th
is
issu

e
fu
rth

er.

171

Figure 10.7 show a histogram of the number of inner iterations for each Newton

outer iteration of each time step.

5

6

7

0

50

100

log
10

 (d o f)
Newton solver iteration

lin
ea

r
so

lv
er

 it
er

at
io

ns

Figure 10.7: Histogram of the number iteration per Newton step in all (5) time steps

172

Figure 10.8 show the total \wall-clock" times for these problems run on an IBM

PowerPC cluster (note, this data was not in the dissertation and solves problems of up to

26.3 million dof, the largest solve also slipped into the �gures above).

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

4

Number of processors (p)

T
im

e(
p)

 *
 N

(1
)

/ p
ro

cs
(1

)
*

pr
oc

s(
p)

 /
N

(p
)

Inclusion Layered Sphere times (~80K per processor) IBM PowerPC cluster

number of iterations (x10)

Total (wall clock) time
Solve for "x" (PETSc)
Solve setup
Coarse grid setup
tolal CG Iterations (x10)

Figure 10.8: End to end times of non-linear solve with 32,000 dof per processor

This data shows that the overall solution times are staying about constant and

that the initial partitioning cost are about equal to the cost of the �ve non-linear solves on

the Cray T3E up to 512 processors. Additionally, the base case (3 processor case), solve

time (in the actual iterations) ran at 71 Mops, and the 512 processor case ran at 20,823

Mops (about 58% e�ciency). This (71 Mops) is the fastest Mop rate per processor that

we have recorded, thus our communication e�ciency is 58% (c = 0:58) on 512 processors.

173

10.6 Lagrange multiplier problems

For problems with multiple bodies, or bodies that fold onto themselves, the sys-

tem of di�erential equations in continuum mechanics must be augmented with algebraic

constraints to prevent penetration between bodies - contact forces must be introduced to

maintain a physically meaningful solution i.e., satisfy conservation laws. Contact constraints

can be implemented in one of two ways. First, \sti�" springs can be added to the system

judiciously to approximate contact i.e., some \penetration" is permitted and the sti�er the

springs the smaller this error - this is known as a penalty approach. Second, the system of

di�erential equations may be augmented with an explicit set of algebraic equations, that

specify the lengths of prescribed \gaps" - i.e., the normal to a plane of a body through a

point on another body, with a speci�ed gap (e.g., 0 for true contact) de�nes one equation.

This speci�ed relative displacement requires that a force be applied, in the direction of the

\gap", to maintain balance of linear momentum. Force terms are thus added to the existing

displacement equations as an applied load, and the magnitude of this load is the value of

the Lagrange multiplier.

For example consider a 1D problem with a spring (k1) attached to a rigid wall and

a mass, and an applied constant load, gives rise to a simple equation for the steady state

response, k1x1 = f1. If another mass-spring were added to the system we would get the

trivial system of equations
k1 0

0 k2

!
x1

x2

!
=

f1

f2

!

If we specify that the two masses must stay in contact with each other (i.e., x1 = x2 or

x1�x2 = 0), we need to augment each equation with the contact force between the masses:

k1x1 = f1 + � and k2x2 = f2 � � to get0
BB@
k1 0 �1
0 k2 1

�1 1 0

1
CCA
0
BB@
x1

x2

�

1
CCA =

0
BB@
f1

f2

0

1
CCA

or
A CT

C 0

!
x

�

!
=

f

0

!
(10.1)

A is a standard sti�ness matrix. Note that we could also assume that k1 = 0 and A would

only be positive semi-de�nite but, in general, the problem is still well posed if vTAv
vT v

6= 0;

8v 2 Ker(C); v 6= 0 [16].

174

We use Lagrange multiplier formulations to impose contact constraints, thus re-

sulting in an inde�nite system of equations. To solve the set of equations we use a simple

Uzawa method [5]. The Uzawa algorithm, or augmented Lagrange method, decouples the

solution for the displacements x, and the Lagrange multipliers �. Outer iterations, on the

Lagrange multipliers, call our multigrid solver which will conduct inner iterations, with a

modi�ed right hand side, see Figure 10.9.

Our sti�ness matrix A can be positive semide�nite. We know A is positive de�nite

over the kernel of C, thus we can regularize A to get a symmetric positive de�nite matrix

�A = A+ �CTDC. Here � is a scalar scaling parameter and D is a scaling matrix. We use

a diagonal matrix for D, Note,

� the solution x� satis�es Cx� = 0, so Ax� = �Ax�, and we have the correct solution

even though we are not using the true sti�ness matrix to calculate the residual.

� our Lagrange multipliers are formed with a simple (slave) point on (master) surface

formulation [57].

� in many texts authors implicitly assume that D is the identity [17].

� penalty methods solves with �A and pick � to be vary large (e.g., 106 times larger than

the largest diagonal entry).

The vector from the slave point, to the surface (normal to the surface) is called the \gap"

vector g; its length is called the gap. We de�ne D, with the gap vector g and the diagonal

entries d of the sti�ness matrix associated with the \slave" node j in each constraint i, as

Dii = gT � d (an alternative de�nition of D is Dii = gtAjjg). The di�culty with penalty

methods i.e., large �, is that the system becomes very \sti�" and di�cult to solve with

iterative methods. The advantage of augmented Lagrange formulations is that they are

more accurate, and the regularized systems (�A) are much better conditioned as a relatively

small � can be used.

Picking � leads to a typical ad hoc minimization process as there are no reliable

methods that we are aware of for picking � a priori, for the problems that are of interest

to this dissertation. If � is too small then the outer iterations will converge slowly, and if �

is too large then the inner iteration (our solver) will converge slowly. We chose � = 5:0, as

this seems to be about optimal for our test problem. Note, the solution times do not seem

to be very sensitive to this parameter. We use a basic Uzawa, with a user provide relative

175

tolerance rtol and absolute tolerance atol, algorithm to solve for x and � in equation (10.1)

as shown in Figure 10.9

�0 = � from previous time step

x = 0

i = 1

while
���Ax+ CT�i�1 � f

��� > rtol � jf j or jCxij > atol

solve for xi: �Axi = f � CT�i�1

�i �i�1 + �Cxi

i i+ 1

Figure 10.9: Uzawa algorithm

10.6.1 Numerical results

We test our solver with a test problem in linear elasticity. Figure 10.10 shows a

problem with three concentric spheres, this is somewhat similar to P2 with out the cube

cover material, and we call it P7. The loading is a thermal load on the middle sphere - i.e.,

the middle sphere is hotter than the inner and outer sphere, and hence expands. The two

interface conditions (between the inner and the middle sphere and the middle and the outer

sphere), are enforced with a contact constraint. The problem has 22,092 dof and about 300

equations in C for each of the two contact surfaces; our standard solver con�guration is used

with 200 blocks of block Jacobi preconditioner for the smoother, four multigrid levels, and a

relative tolerance of 10�12 or 10�6 on the residual. These solves have two separate inuences

 Time = 3.37E+30

Figure 10.10: 22,092 dof concentric spheres with contact, undeformed and deformed shape

176

on their performance, the number of outer iterations and the cost of each iteration. We

provide a \control" case - that is a similar problems with no contact. Figure 10.11 shows

the concentric sphere problem without contact, both the undeformed and deformed shape.

 Time = 3.37E+30

Figure 10.11: 15,810 dof concentric spheres without contact, undeformed and deformed

shape

Table 10.2 shows the results of this experiment. The average convergence rate for

each Uzawa iteration is about the same as that of the no contact problem. As we use an

adaptive convergence tolerance in the inner iterations (rtolmi

inner = jCxmi j), the regularized
problem is in fact a bit more di�cult to solve than our control problem.

problem inner iterations (total) outer iterations

rtol 10�12 10�6 10�12 10�6

no contact 27 12 1 1

contact 313 85 14 7

Table 10.2: Multigrid preconditioned CG iteration counts for contact problem

From this data we can see that the cost is growing at about the logarithm of the

convergence tolerance, with about twice as many outer iterations and about twice as many

inner iterations, per outer iteration. This is probably not optimal and may be the subject

of future research. A potential avenue to improve this algorithm is to use preconditioned

Uzawa methods [33].

177

10.7 Conclusion

We conclude that our linear solver can be e�ectively used in solving non-linear

problems, and that it remains robust for problems with thin body features and up to 16.6

million equations on up to 512 processors of a Cray T3E, with about 60% parallel e�ciency.

Our non-linear problems also present some the the most challenging operators, namely

with geometric sti�ness, which lowers the lowest eigenvalues (hence increases the condition

number of the matrix), and \softening" materials from yielding plasticity materials resulting

in areas of strain localization with highly incompressible constitution. Thus, we are able to

show that our solver remains robust on large scale problems, in the presents very challenging

materials. Also we show that our solver has the potential to be useful is solving contact

problems with Lagrange multipliers.

178

Chapter 11

Conclusion

This dissertation has developed a promising method for solving the linear set of

equations arising from implicit �nite element applications in solid mechanics. Our approach,

a 3D and parallel extension to an existing serial 2D algorithm, is to our knowledge unique in

that it is a fully automatic (i.e. the user need only provide the �ne grid, which is easily avail-

able in most �nite element codes) standard geometric multigrid method for unstructured

�nite element problems.

We have developed heuristics for the automatic parallel construction of the coarse

grids for 3D problems in solid mechanics; this work represents some of the most original

contributions of this dissertation. Our method is the most scalable and robust (i.e., with

respect to convergence rate and breadth of problems on which it is e�ective) multigrid

algorithm on unstructured �nite element problems that we are aware of. Additionally we

have developed and analyzed a new parallel maximal independent set algorithm that has

superior PRAM complexity on �nite element meshes, than the commonly used random

algorithms, and is very practical.

We have developed a fully parallel and portable prototype solver that shows

promising results, both in terms of convergence rates and parallel e�ciency, for some mod-

estly complex geometries with challenging materials in large deformation elasticity and

plasticity. Our prototype has solved problems of up to 16.6 million degrees of freedom on

problems with large deformation elasticity and plasticity on a Cray T3E with up to 512

processors, and on an IBM PowerPC cluster with up to 128 4-way SMP nodes processors;

we have also run on a network of workstations [68] and a network of PC SMPs [67]. We have

developed a complexity theory, and have begun to develop a complexity model, of multigrid

179

equation solvers for 3D �nite element problems on parallel computers. Additionally we have

developed agglomeration strategies for the optimal selection of active processor sets on the

coarse grids of multigrid, as this is essential for optimal scalability.

We have also developed a highly parallel �nite element implementation, built on

an existing state-of-the-art serial research \legacy" �nite element implementation that uses

our parallel solver. By necessity we have developed a novel, domain decomposition based

parallel �nite element programming model, that builds a complete �nite element problem

on each processor as its primary abstraction.

The implementation of our prototype system (ParFeap) required about 30,000

lines of our own C++ code, plus several large packages: PETSc (160,000 lines of C),

FEAP (105,000 lines of FORTRAN), METIS/ParMetis (30,000 lines of C), and geometric

predicates (4,000 lines of C) [73]. This complexity was required because

� e�cient parallel multigrid solvers for unstructured meshes are inherently complex,

� algorithm development and veri�cation of success in this area is highly experimentally

based, and thus requires a exible full featured computational substrate to enable this

type of research, and

� we require portable implementations, so we use explicit message passing (MPI), as our

parallel programming paradigm, while accommodating both \at" and hierarchical

memory architectures (clusters of SMPs, CLUMPs).

Additionally this work is rather broad, in the sense that the emphasis has been on getting

a prototype of the best �nite element linear equation solver possible - this has limited the

amount of time that could be devoted to investigating more optimized approaches to each

aspect of our algorithm. In fact the vary exploratory nature of this work demands a non-

optimal implementation, in that there is no sense in optimizing any system (e.g., a parallel

linear solver for unstructured �nite element problems) before the overall practical quality

of the algorithm and a particular application area have been determined. Thus, there is

much more work to be done.

11.1 Future Work

1. To be useful to a more general �nite element community we need to extend the

algorithm and its features:

180

� Investigate more sophisticated face identi�cation algorithms, to increase robust-

ness of solver on arbitrary complex domains.

� Incorporate a parallel Delaunay tessellation algorithm [12] so as to develop more

robust and globally consistent implementations.

� Incorporate a parallel direct solver for the coarsest grid [58].

� Extend the implementation for more element types: shells, beams, trusses, etc.

� Accommodate higher order elements such as, supporting higher dof per vertex

for p-adaptive methods and multi-physics problems.

2. Develop solution strategies and implementations to extend application domains.

� Investigate highly nonlinear problems to evaluate solver characteristics on prob-

lems in plasticity, large deformation elasticity as well as other areas as one ap-

proaches the limit load, so as to develop strategies to e�ectively solve these highly

non-linear �nite element problems.

� Investigate non-CG Krylov subspace methods for inde�nite systems from large

deformation elasticity and plasticity.

� Develop parallel and preconditioned Uzawa solvers for inde�nite systems from

constrained problems with Lagrange multipliers.

� Investigate multigrid algorithms for di�erential and algebraic systems from con-

strained problems with Lagrange multipliers.

3. Develop PETSc to more fully support large scale \algebraic" multigrid applications

e�ciently.

� Incorporate a general RAP (sparse matrix triple product) in PETSc (we have im-

plemented a specialized RAP, requiring a copy of the R matrix within Epimetheus).

� Implement faster o�-processor, and on-processor, matrix assembly routines.

� Improve the e�ciency of the additive Schwarz preconditioner setup phase.

� Add \left" and \right" communicators to restriction matrices to fully support

coarse grid agglomeration.

� Optimize numerical kernels for shared memory architectures.

181

4. Rebuild and cleanup the prototype's infrastructure for distributed multilevel unstruc-

tured grid classes.

� Redesign the parallel distributed multi-level classes.

� Redesign the data structures, and clean the code up.

� Separate the distributed multilevel unstructured grid classes from Prometheus

so as to provide a class library to the public.

5. Add and test other promising \algebraic" multigrid algorithms e.g.

� Agglomeration with rigid body modes: Bulgakov and Kuhn (1995) x4.2 [19].

� Smoothed agglomeration: Vanek and Mandel (1995) x4.2 [83].

6. Build, maintain, document, and support a Library interface.

� Encapsulate Prometheus into a PETSc \PC" object (low level).

� Develop a higher level interface (e.g., FEI [37]).

182

Bibliography

[1] Mark Adams. Heuristics for the automatic construction of coarse grids in multigrid solvers

for �nite element matrices. Technical Report UCB//CSD-98-994, University of California,

Berkeley, 1998.

[2] Mark Adams. A parallel maximal independent set algorithm. In Proceedings 5th copper moun-

tain conference on iterative methods, 1998.

[3] Anderson, Bai, Bischof, Demmel, Dongarra, DuCroz, Greenbaum, Hammarling, McKenney,

Ostrouchov, and Sorensen. LAPACK Users' Guide. SIAM, 1992.

[4] J.H Argyris and S. Kelsey. Energy theorems and structural analysis. Aircraft engineering, 1955.

[5] K. Arrow, Hurwicz L., and Uzawa H. Studies in nonlinear programming. Stanford University

Press, 1958.

[6] ASCI. http://www.llnl.gov/asci.

[7] ASCI Red machine at Sandia National Laboratory. http://www.sandia.gov/ASCI/Red.

[8] S. B. Baden. Software infrastructure for non-uniform scienti�c computations on parallel pro-

cessors. Applied Computing Review, ACM, 4(1):7{10, Spring 1996.

[9] T. Baker. Mesh generation for the computation of ow �elds over complex aerodynamic shapes.

Computers Math. Applic., 24(5/6), 1992.

[10] S. Balay, W.D. Gropp, L. C. McInnes, and B.F. Smith. PETSc 2.0 users manual. Technical

report, Argonne National Laboratory, 1996.

[11] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In Computing

in Euclidean Geometry, World Scienti�c Publishing, 1992.

[12] Guy Blelloch, Gary L Miller, and Dafna Talmor. Design and implementation of a practical

parallel Delaunay algorithm. To appear in Algorithmica, 1998.

[13] A. Brandt. Multi-level adaptive solutions to boundary value problems. Math. Comput., 31:333{

390, 1977.

183

[14] D. Brelaz. New method to color the vertices of a graph. Comm ACM, 22:251{256, 1979.

[15] Eric A. Brewer. High-level optimization via automated statistical modeling. PPoPP, 1995.

[16] Franco Brezzi and Klaus-Jurgen Bathe. A discourse on the stability conditions for mixed �nite

element formulations. Computer methods in applied mechanics and engineering, 82:27{57, 1990.

[17] Franco Brezzi and Michel Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag,

1991.

[18] W. Briggs. A Multigrid Tutorial. SIAM, 1987.

[19] V.E. Bulgakov and G. Kuhn. High-performance multilevel iterative aggregation solver for large

�nite-element structural analysis problems. International Journal for Numerical Methods in

Engineering, 38, 1995.

[20] Edward K. Buratynski. A fully automatic three-dimensional mesh generator for complex ge-

ometries. International Journal for Numerical Methods in Engineering, 30:931{952, 1990.

[21] James C. Cavendish. Automatic triangulation of arbitrary planar domains for the �nite element

method. International Journal for Numerical Methods in Engineering, 8, 1974.

[22] T.F. Chan and Y. Saad. Multigrid algorithms on the hypercube multiprocessor. IEEE Trans.

Comput., C-35:969{977, 1986.

[23] Tony F. Chan and Barry F. Smith. Multigrid and domain decomposition on unstructured

grids. In David F. Keyes and Jinchao Xu, editors, Seventh Annual International Conference

on Domain Decomposition Methods in Scienti�c and Engineering Computing. AMS, 1995. A

revised version of this paper has appeared in ETNA, 2:171-182, December 1994.

[24] Philippe G Ciarlet. The �nite element method for elliptic problems. North-Holland Pub. Co.,

1978.

[25] R. Courant. Variational methods for the solution of problems of equalibrium and vibration.

Bulletin of the American Mathematical Society, 49:1{23, 1943.

[26] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice

Santos, Ramesh Subramonian, and Thorsten von Eicken. Logp: Towards a realistic model of

parallel computation. In PPOPP, May 1993.

[27] James Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[28] J.E. Dendy, M.P. Ida, and Rutledge J.M. A semicoarsening multigrid algorithm for SIMD

machines. SIAM J. Sci. Stat. Comput., 13:1460{1469, 1992.

[29] Jack J. Dongarra. Performance of various computers using standard linear equations software.

Technical Report CS-89-85, University of Tennessee, Knoxville, 1998.

184

[30] M.C. Dracopoulos and M.A Cris�eld. Coarse/�ne mesh preconditioners for the iterative solu-

tion of �nite element problems. International Journal for Numerical Methods in Engineering,

38:3297{3313, 1995.

[31] Maksymillian Dryja, Barry F. Smith, and Olof B. Widlund. Schwarz analysis of iterative

substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal.,

31(6):1662{1694, December 1994.

[32] Laura C. Dutto, Wagdi G. Habashi, and Michel Fortin. An algebraic multilevel parallelizable

preconditioner for large scale CFD problems. Comput. Methods Appl. Mech. Engrg., 149:303{

3018, 1997.

[33] Howard C. Elman and Gene H. Golub. Inexact and preconditioned Uzawa algorithms for saddle

point problems. SAIM J. Numer Anal., 31(6):1645{1661, 1994.

[34] Charbel Farhat, Jan Mandel, and Francois-Xavier Roux. Optimal convergence properties of

the FETI domain decomposition method. Computer Methods in Applied Mechanics and Engi-

neering, 115:365{385, 1994.

[35] Charbel Farhat and Francois-Xavier Roux. A method of �nite element tearing and intercon-

necting and its parallel solution algorithm. International Journal for Numerical Methods in

Engineering, 32:1205{1227, 1991.

[36] FEAP. http://www.ce.berkeley.edu/� rlt.

[37] FEI. http://z.ca.sandia.gov/fei.

[38] D. A. Field. ImplementingWatson's algorithm in three dimensions. In Proc. Second Ann. ACM

Symp. Comp. Geom., 1986.

[39] J. Fish, V. Belsky, and S. Gomma. Unstructured multigrid method for shells. International

Journal for Numerical Methods in Engineering, 39:1181{1197, 1996.

[40] J. Fish, M. Pandheeradi, and V. Belsky. An e�cient multilevel solution scheme for large scale

non-linear systems. International Journal for Numerical Methods in Engineering, 38:1597{1610,

1995.

[41] S. Fortune and J. Wyllie. Parallelism in random access machines. In ACM Symp. on Theory

of Computing, pages 114{118, 1978.

[42] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh partitioning: Imple-

mentation and experiments. Technical Report CSL-94-13, Xerox Palo Alto Research Center,

1994.

[43] Gene H. Golub and Charles Van Loan. Matrix Computations. John Hopkins University Press,

1983.

185

[44] Herve Guillard. Node-nested multi-grid with Delaunay coarsening. Technical Report 1898,

Institute National de Recherche en Informatique et en Automatique, 1993.

[45] O. Hassan, K. Morgan, E.J. Probert, and J. Peraire. Unstructured tetrahedral mesh generation

for three-dimensional viscous ows. International Journal for Numerical Methods in Engineer-

ing, 39, 1996.

[46] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. In Proc.

Supercomputing '95, 1993. Formerly, Technical Report SAND93-1301 (1993).

[47] Bruce Hendrickson and Robert Leland. An improved spectral graph partitioning algorithm for

mapping parallel computations. SIAM J. Sci. Stat. Comput., 16(2):452{469, 1995.

[48] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.

Res. Natl. Bur. Stand., 49:409{436, 1954.

[49] Ellis Horowititz and Sartaj Sahni. Fundamentals of computer algorithms. Galgotia Publications,

1988.

[50] Mark T. Jones and Paul E. Plassman. A parallel graph coloring heuristic. SIAM J. Sci.

Comput., 14(3):654{669, 1993.

[51] S. Kacau and I. D. Parsons. A parallel multigrid method for history-dependent elastoplacticity

computations. Computer methods in applied mechanics and engineering, 108, 1993.

[52] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J. Sci. Comput., To appear.

[53] George Karypis and Kumar Vipin. Parallel multilevel k-way partitioning scheme for irregular

graphs. Supercomputing, 1996.

[54] B.W. Kernigham and S Lin. An e�cient heuristic procedure for partitioning graphs. The Bell

System Technical Journal, 1970.

[55] D. E. Keyes. Aerodynamic applications of Newton-Krylov-Schwarz solvers. In M. Deshpande,

S. Desai, and R. Narasimha, editors, Proceedings of the 14th International Conference on Nu-

merical Methods in Fluid Dynamics, pages 1{20, Springer,New York, 1995.

[56] David Kincaid and Ward Cheney. Numerical Analysis. Brooks/Cole Publishing Company, 1991.

[57] N. Kirkuchi and J. T. Oden. Contact Problems in Elasticity. SIAM, 1988.

[58] Xiaoye S. Li, J. Demmel, and J. Gilbert. An asynchronous parallel supernodal algorithm for

sparse gaussian elimination. To appear in SIAM J. Matrix Anal. Appl., 1998.

[59] R. Lohner. Parallel unstructured grid generation. Comp. Meth. App. Mech. Eng., 1992.

186

[60] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.

Comput., 4:1036{1053, 1986.

[61] David G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-Wesley,

1973.

[62] S. S. Lumetta, A. M. Mainwaring, and D. E. Culler. Multi-Protocol Active Messages on a

Cluster of SMP's. In Proceedings of SC97: High Performance Networking and Computing, San

Jose, California, November 1997.

[63] J. Mandel. Balancing domain decomposition. Comm. Numer. Meth. Eng., 9:233{241, 1993.

[64] Dimitri J. Mavriplis. Directional agglomeration multigrid techniques for high-Reynolds number

viscous ows. Technical Report 98-7, Institute for Computer Applications in Science and En-

gineering Mail Stop 403, NASA Langley Research Center Hampton, VA 23681-0001, January

1998.

[65] Dimitri J. Mavriplis. Multigrid strategies viscous ow solvers on anisotropic unstructured

meshes. Technical Report 98-6, Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center Hampton, VA 23681-0001, January 1998.

[66] MGNet. http://www.mgnet.org.

[67] Millennium project. http://www.millennium.berkeley.edu.

[68] NOW project. http://now.cs.berkeley.edu.

[69] D.R.J. Owen, Y.T. Feng, and D Peric. A multi-grid enhanced GMRES algorithm for elasto-

plastic problems. International Journal for Numerical Methods in Engineering, 42:1441{1462,

1998.

[70] J.S. Przemieniecki. Matrix structural analysis of substructures. Am. Inst. Aero. Astro. J.,

1:138,147, 1963.

[71] J. Ruge. AMG for problems of elasticity. Applied Mathematics and Computation, 23:293{309,

1986.

[72] Y. Saad and H Schultz. GMRES: A generalized minimal residual algorithm for solving non-

symmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856{869, 1986.

[73] Jonathan Richard Shewchuk. Adaptive precision oating point arithmetic and fast robust

geometric predicates. Technical Report CMU-CS-96-140, School of Computer Science, Carnegie

Mellon University, Pittsburgh, Pennsylvania, 1996. Submitted to Discrete and Computational

Geometry.

187

[74] Jonathan Richard Shewchuk. Delaunay Re�nement Mesh Generation. PhD thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1997. Available

as Technical Report CMU-CS-97-137.

[75] J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer-Verlag, 1998.

[76] J.C. Simo, Taylor R.L., and Pister K.S. Variational and projection methods for the volume

constraint in �nite deformation elasto-plasticity. Computer Methods in Applied Mechanics and

Engineering, 51:177{208, 1985.

[77] Barry Smith. A parallel implementation of an iterative substructuring algorithm in three di-

mensions. SIAM J. Sci. Comput., 13(1):406{423, 1993.

[78] Barry Smith, Petter Bjorstad, and William Gropp. Domain Decomposition. Cambridge Uni-

versity Press, 1996.

[79] Ken Stanley. Execution Time of Symmetric Eigensolvers. PhD thesis, University of California

at Berkeley, 1997.

[80] Made Suarjana and Kincho Law. A robust incomplete factorization based on value and space

constraints. Methods in Engineering, 38:1703{1719, 1995.

[81] Dafna Talmor. Well spaced points for numerical methods. PhD thesis, Carnegie Mellon Uni-

versity, Pittsburgh PA 15213-3891, 1997.

[82] Sivan Toledo. Improving memory-system performance of sparse matrix-vector multiplication.

In Proceedings of the 8th SIAM Conference on Parallel Processing for Scienti�c Computing,

March 1997.

[83] P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second

and fourth order elliptic problems. In 7th Copper Mountain Conference on Multigrid Methods,

1995.

[84] David E. Womble and Brenton C. Young. A model and implementation of multigrid for mas-

sively parallel computers. Technical Report SAND89-2781J, Sandia National Laboratory, 1989.

[85] Yelick, Semenzato, Pike, Miyamoto, Liblit, Krishnamurthy, Hil�nger, Graham, Gay, Colella,

and Aiken. Titanium: A high-performance Java dialect. In Workshop on Java for High-

Performance Network Computing, Stanford, California, February 1998.

[86] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1. McGraw-Hill,

London, Fourth edition, 1989.

188

Appendix A

Test problems

This section lists all of our test problems here with some statistics about them.

This is meant to provide a reference with more detail about the problems and to provide a

single location for reference to the test problems.

Materials

All materials are mixed pressure-displacement, eight node trilinear �nite elements

elements.

Material name elastic modulus Poisson ratio yield stress hardening modulus deformation type

hard-linear 1 0:3 1 NA small

soft-linear 10�4 0:49 1 NA small

hard-nonlinear 1 0:3 0:002 0:002 large

soft-nonlinear 10�4 0:49 1 NA large

Table A.1: Materials for test problems

189

Problem 1: Included sphere

Figure A.1: 13,882 Vertex 3D FE mesh and deformed shape

Materials: hard-linear sphere, soft-linear cover.

Boundary conditions: Symmetry on sides, uniform load on top.

190

dof � condition number non-zeros (x9)

3410 1:75 � 106
14880 3:5 � 106 128386

25308 7:2 � 106 219835

39732 346816

58800 515161

113460 999271

194472 1718821

246480 2181466

307020 2720467

376740 3341656

456288 4050865

546312 4853926

647460 5756671

760380 6764932

885720 7884541

1024128 9121330

1176252 10481131

1342740 11969776

1524240 13593097

1721400 15356926

1934868 17267095

2167221 19329436

2413320 21549781

2679600 23933962

2964780 26487811

3269508 29217160

3594432 32127841

3940200 35225686

4307460 38516527

4696860 42006196

5109048 45700525

5544672 49605346

7534488 67446190

Table A.2: Problem P1 statistics

191

Problem 2: Included layered sphere

Figure A.2: 80,000 dof concentric spheres problem

Materials: Nine hard-nonlinear layers and eight soft-nonlinear layers in spheres,

soft-nonlinear cover.

Boundary conditions: Symmetry on sides, uniform imposed displacement on

top.

dof � condition number non-zeros (x9)

79679 705693

622815 5559456

2085599 18667011

4924223 44134086

9594879 86066409

16553759

26257055

Table A.3: Problem P2 statistics

192

Problem 3: Cantilever beam

Time = 0.00E+00Time = 0.00E+00

Figure A.3: Cantilever with uniform mesh and end load, 4� 4� 128 element mesh, N = 4

Materials: hard-linear.

Boundary conditions: One end �xed, uniform, o�-axis load on the other end.

dof � condition number non-zeros (x9)

1,728 2:9 � 107
9,600 1:2 � 108
62,208 4:3 � 108

Table A.4: Problem P3 statistics

193

Problem 4: Cone

 1.08E+00

 5.51E+00

 9.93E+00

 1.44E+01

 1.88E+01

 2.32E+01

-3.35E+00

 2.76E+01

 PRIN. STRESS 1

Current View
Min = -2.54E+00
X = 0.00E+00
Y = 7.87E+00
Z =-6.48E+01
Max = 2.65E+01
X = 2.71E+02
Y =-8.16E-01
Z =-4.06E+01

 Time = 3.37E+30

Figure A.4: Truncated hollow cone

Materials: hard-linear.

Boundary conditions: One end �xed, o�-axis load, with a torque, on the other

end.

dof � condition number non-zeros (x9)

21,700 3:6 � 107

Table A.5: Problem P4 statistics

194

Problem 5: Tube

Figure A.5: Cantilevered tube

Materials: hard-linear.

Boundary conditions: One end �xed, uniform, o�-axis load on the other end.

dof � condition number non-zeros (x9)

57,600 1:8 � 105 428,880

Table A.6: Problem P5 statistics

195

Problem 6: Beam-column

Figure A.6: Beam-column

Materials: hard-linear.

Boundary conditions: Top and bottom of column �xed and uniform load down

on end of beam.

dof � condition number non-zeros (x9)

34,460 1:0 � 108 268,813

Table A.7: Problem P6 statistics

196

Problem 7: Concentric spheres without contact

 Time = 3.37E+30

Figure A.7: Concentric spheres without contact

Materials: ALE3D matrix, steel on inner and outer shell, aluminum middle sec-

tion.

Boundary conditions: Sphere symmetry boundary conditions, with thermal

load on middle section.

dof � condition number non-zeros (x9)

15,810

Table A.8: Problem P7 statistics

197

Problem 8: Concentric spheres with contact

 Time = 3.37E+30

Figure A.8: Concentric spheres with contact

Materials: ALE3D matrix, steel on inner and outer shell, aluminum middle sec-

tion.

Boundary conditions: Sphere symmetry boundary conditions, with thermal

load on middle section. Contact between shells enforces with Lagrange multipliers.

dof � condition number non-zeros (x9)

22,092

Table A.9: Problem P8 statistics

198

Appendix B

Machines

640 processor Cray T3E, at NERSC

The Cray T3E at NERSC has 696 single processor nodes total (up to 692 processors

have been used for a single job), 450 MHz., 900 Mop/sec theoretical peak, 256 MB memory

per processor, and a peak Mop rate of 662 Mop/sec (1/2 of 2 processor Linpack Rmax).

150 Node/ 600 processor PowerPC cluster, at LLNL

The IBM at LLNL, has about 150 4-way-SMPs available to users, 332 MHz Pow-

erPC 604e processors, 664 Mop/sec theoretical peak, 512 MB of memory per node, and a

peak Mop rate of 258 Mop/sec (1/2 of 2 processor Linpack \toward perfect parallelism"

as reported at http://www.rs6000.ibm.com/hardware/largescale/index.html).

